| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem43.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | etransclem43.x |  |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | etransclem43.p |  |-  ( ph -> P e. NN ) | 
						
							| 4 |  | etransclem43.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 5 |  | etransclem43.f |  |-  F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 6 |  | etransclem43.g |  |-  G = ( x e. X |-> sum_ i e. ( 0 ... R ) ( ( ( S Dn F ) ` i ) ` x ) ) | 
						
							| 7 | 1 2 | dvdmsscn |  |-  ( ph -> X C_ CC ) | 
						
							| 8 |  | fzfid |  |-  ( ph -> ( 0 ... R ) e. Fin ) | 
						
							| 9 | 1 | adantr |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> S e. { RR , CC } ) | 
						
							| 10 | 2 | adantr |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 11 | 3 | adantr |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> P e. NN ) | 
						
							| 12 | 4 | adantr |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> M e. NN0 ) | 
						
							| 13 |  | elfznn0 |  |-  ( i e. ( 0 ... R ) -> i e. NN0 ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> i e. NN0 ) | 
						
							| 15 | 9 10 11 12 5 14 | etransclem33 |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( S Dn F ) ` i ) : X --> CC ) | 
						
							| 16 | 15 | feqmptd |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( S Dn F ) ` i ) = ( x e. X |-> ( ( ( S Dn F ) ` i ) ` x ) ) ) | 
						
							| 17 | 9 10 11 12 5 14 | etransclem40 |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( S Dn F ) ` i ) e. ( X -cn-> CC ) ) | 
						
							| 18 | 16 17 | eqeltrrd |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( x e. X |-> ( ( ( S Dn F ) ` i ) ` x ) ) e. ( X -cn-> CC ) ) | 
						
							| 19 | 7 8 18 | fsumcncf |  |-  ( ph -> ( x e. X |-> sum_ i e. ( 0 ... R ) ( ( ( S Dn F ) ` i ) ` x ) ) e. ( X -cn-> CC ) ) | 
						
							| 20 | 6 19 | eqeltrid |  |-  ( ph -> G e. ( X -cn-> CC ) ) |