| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem44.a |  |-  ( ph -> A : NN0 --> ZZ ) | 
						
							| 2 |  | etransclem44.a0 |  |-  ( ph -> ( A ` 0 ) =/= 0 ) | 
						
							| 3 |  | etransclem44.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 4 |  | etransclem44.p |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | etransclem44.ap |  |-  ( ph -> ( abs ` ( A ` 0 ) ) < P ) | 
						
							| 6 |  | etransclem44.mp |  |-  ( ph -> ( ! ` M ) < P ) | 
						
							| 7 |  | etransclem44.f |  |-  F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 8 |  | etransclem44.k |  |-  K = ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> K = ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 10 |  | nfv |  |-  F/ k ph | 
						
							| 11 |  | nfcv |  |-  F/_ k ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) | 
						
							| 12 |  | fzfi |  |-  ( 0 ... M ) e. Fin | 
						
							| 13 |  | fzfi |  |-  ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) e. Fin | 
						
							| 14 |  | xpfi |  |-  ( ( ( 0 ... M ) e. Fin /\ ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) e. Fin ) -> ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin ) | 
						
							| 15 | 12 13 14 | mp2an |  |-  ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin | 
						
							| 16 | 15 | a1i |  |-  ( ph -> ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin ) | 
						
							| 17 | 1 | adantr |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> A : NN0 --> ZZ ) | 
						
							| 18 |  | fzssnn0 |  |-  ( 0 ... M ) C_ NN0 | 
						
							| 19 |  | xp1st |  |-  ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 1st ` k ) e. ( 0 ... M ) ) | 
						
							| 20 | 18 19 | sselid |  |-  ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 1st ` k ) e. NN0 ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. NN0 ) | 
						
							| 22 | 17 21 | ffvelcdmd |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( A ` ( 1st ` k ) ) e. ZZ ) | 
						
							| 23 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 24 | 23 | a1i |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> RR e. { RR , CC } ) | 
						
							| 25 |  | reopn |  |-  RR e. ( topGen ` ran (,) ) | 
						
							| 26 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 27 | 25 26 | eleqtri |  |-  RR e. ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 28 | 27 | a1i |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 29 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 30 | 4 29 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> P e. NN ) | 
						
							| 32 | 3 | adantr |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> M e. NN0 ) | 
						
							| 33 |  | xp2nd |  |-  ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 2nd ` k ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) | 
						
							| 34 |  | elfznn0 |  |-  ( ( 2nd ` k ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) -> ( 2nd ` k ) e. NN0 ) | 
						
							| 35 | 33 34 | syl |  |-  ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 2nd ` k ) e. NN0 ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 2nd ` k ) e. NN0 ) | 
						
							| 37 | 21 | nn0red |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. RR ) | 
						
							| 38 | 21 | nn0zd |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. ZZ ) | 
						
							| 39 | 24 28 31 32 7 36 37 38 | etransclem42 |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. ZZ ) | 
						
							| 40 | 22 39 | zmulcld |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. ZZ ) | 
						
							| 41 | 40 | zcnd |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) | 
						
							| 42 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 43 | 3 42 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 44 |  | eluzfz1 |  |-  ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) | 
						
							| 45 | 43 44 | syl |  |-  ( ph -> 0 e. ( 0 ... M ) ) | 
						
							| 46 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 47 | 3 | nn0zd |  |-  ( ph -> M e. ZZ ) | 
						
							| 48 | 30 | nnzd |  |-  ( ph -> P e. ZZ ) | 
						
							| 49 | 47 48 | zmulcld |  |-  ( ph -> ( M x. P ) e. ZZ ) | 
						
							| 50 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 51 | 30 50 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 52 | 51 | nn0zd |  |-  ( ph -> ( P - 1 ) e. ZZ ) | 
						
							| 53 | 49 52 | zaddcld |  |-  ( ph -> ( ( M x. P ) + ( P - 1 ) ) e. ZZ ) | 
						
							| 54 | 51 | nn0ge0d |  |-  ( ph -> 0 <_ ( P - 1 ) ) | 
						
							| 55 | 30 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 56 | 3 55 | nn0mulcld |  |-  ( ph -> ( M x. P ) e. NN0 ) | 
						
							| 57 | 56 | nn0ge0d |  |-  ( ph -> 0 <_ ( M x. P ) ) | 
						
							| 58 | 51 | nn0red |  |-  ( ph -> ( P - 1 ) e. RR ) | 
						
							| 59 | 49 | zred |  |-  ( ph -> ( M x. P ) e. RR ) | 
						
							| 60 | 58 59 | addge02d |  |-  ( ph -> ( 0 <_ ( M x. P ) <-> ( P - 1 ) <_ ( ( M x. P ) + ( P - 1 ) ) ) ) | 
						
							| 61 | 57 60 | mpbid |  |-  ( ph -> ( P - 1 ) <_ ( ( M x. P ) + ( P - 1 ) ) ) | 
						
							| 62 | 46 53 52 54 61 | elfzd |  |-  ( ph -> ( P - 1 ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) | 
						
							| 63 |  | opelxp |  |-  ( <. 0 , ( P - 1 ) >. e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) <-> ( 0 e. ( 0 ... M ) /\ ( P - 1 ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) | 
						
							| 64 | 45 62 63 | sylanbrc |  |-  ( ph -> <. 0 , ( P - 1 ) >. e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) | 
						
							| 65 |  | fveq2 |  |-  ( k = <. 0 , ( P - 1 ) >. -> ( 1st ` k ) = ( 1st ` <. 0 , ( P - 1 ) >. ) ) | 
						
							| 66 |  | 0re |  |-  0 e. RR | 
						
							| 67 |  | ovex |  |-  ( P - 1 ) e. _V | 
						
							| 68 |  | op1stg |  |-  ( ( 0 e. RR /\ ( P - 1 ) e. _V ) -> ( 1st ` <. 0 , ( P - 1 ) >. ) = 0 ) | 
						
							| 69 | 66 67 68 | mp2an |  |-  ( 1st ` <. 0 , ( P - 1 ) >. ) = 0 | 
						
							| 70 | 65 69 | eqtrdi |  |-  ( k = <. 0 , ( P - 1 ) >. -> ( 1st ` k ) = 0 ) | 
						
							| 71 | 70 | fveq2d |  |-  ( k = <. 0 , ( P - 1 ) >. -> ( A ` ( 1st ` k ) ) = ( A ` 0 ) ) | 
						
							| 72 |  | fveq2 |  |-  ( k = <. 0 , ( P - 1 ) >. -> ( 2nd ` k ) = ( 2nd ` <. 0 , ( P - 1 ) >. ) ) | 
						
							| 73 |  | op2ndg |  |-  ( ( 0 e. RR /\ ( P - 1 ) e. _V ) -> ( 2nd ` <. 0 , ( P - 1 ) >. ) = ( P - 1 ) ) | 
						
							| 74 | 66 67 73 | mp2an |  |-  ( 2nd ` <. 0 , ( P - 1 ) >. ) = ( P - 1 ) | 
						
							| 75 | 72 74 | eqtrdi |  |-  ( k = <. 0 , ( P - 1 ) >. -> ( 2nd ` k ) = ( P - 1 ) ) | 
						
							| 76 | 75 | fveq2d |  |-  ( k = <. 0 , ( P - 1 ) >. -> ( ( RR Dn F ) ` ( 2nd ` k ) ) = ( ( RR Dn F ) ` ( P - 1 ) ) ) | 
						
							| 77 | 76 70 | fveq12d |  |-  ( k = <. 0 , ( P - 1 ) >. -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) = ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) | 
						
							| 78 | 71 77 | oveq12d |  |-  ( k = <. 0 , ( P - 1 ) >. -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) = ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) ) | 
						
							| 79 | 10 11 16 41 64 78 | fsumsplit1 |  |-  ( ph -> sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) = ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) + sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) ) | 
						
							| 80 | 79 | oveq1d |  |-  ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) + sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 81 | 18 45 | sselid |  |-  ( ph -> 0 e. NN0 ) | 
						
							| 82 | 1 81 | ffvelcdmd |  |-  ( ph -> ( A ` 0 ) e. ZZ ) | 
						
							| 83 | 23 | a1i |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 84 | 27 | a1i |  |-  ( ph -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 85 | 66 | a1i |  |-  ( ph -> 0 e. RR ) | 
						
							| 86 | 83 84 30 3 7 51 85 46 | etransclem42 |  |-  ( ph -> ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) e. ZZ ) | 
						
							| 87 | 82 86 | zmulcld |  |-  ( ph -> ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) e. ZZ ) | 
						
							| 88 | 87 | zcnd |  |-  ( ph -> ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) e. CC ) | 
						
							| 89 |  | difss |  |-  ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) C_ ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) | 
						
							| 90 |  | ssfi |  |-  ( ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin /\ ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) C_ ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) e. Fin ) | 
						
							| 91 | 15 89 90 | mp2an |  |-  ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) e. Fin | 
						
							| 92 | 91 | a1i |  |-  ( ph -> ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) e. Fin ) | 
						
							| 93 |  | eldifi |  |-  ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) -> k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) | 
						
							| 94 | 93 40 | sylan2 |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. ZZ ) | 
						
							| 95 | 92 94 | fsumzcl |  |-  ( ph -> sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. ZZ ) | 
						
							| 96 | 95 | zcnd |  |-  ( ph -> sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) | 
						
							| 97 | 51 | faccld |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. NN ) | 
						
							| 98 | 97 | nncnd |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. CC ) | 
						
							| 99 | 97 | nnne0d |  |-  ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) | 
						
							| 100 | 88 96 98 99 | divdird |  |-  ( ph -> ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) + sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) + ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 101 | 9 80 100 | 3eqtrd |  |-  ( ph -> K = ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) + ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 102 | 30 | nnne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 103 | 82 | zcnd |  |-  ( ph -> ( A ` 0 ) e. CC ) | 
						
							| 104 | 86 | zcnd |  |-  ( ph -> ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) e. CC ) | 
						
							| 105 | 103 104 98 99 | divassd |  |-  ( ph -> ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) = ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 106 |  | etransclem5 |  |-  ( k e. ( 0 ... M ) |-> ( y e. RR |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. RR |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 107 |  | etransclem11 |  |-  ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) | 
						
							| 108 | 83 84 30 3 7 51 106 107 45 85 | etransclem37 |  |-  ( ph -> ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) | 
						
							| 109 | 97 | nnzd |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. ZZ ) | 
						
							| 110 |  | dvdsval2 |  |-  ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ! ` ( P - 1 ) ) =/= 0 /\ ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) e. ZZ ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) <-> ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) | 
						
							| 111 | 109 99 86 110 | syl3anc |  |-  ( ph -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) <-> ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) | 
						
							| 112 | 108 111 | mpbid |  |-  ( ph -> ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 113 | 82 112 | zmulcld |  |-  ( ph -> ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) e. ZZ ) | 
						
							| 114 | 105 113 | eqeltrd |  |-  ( ph -> ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 115 | 93 41 | sylan2 |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) | 
						
							| 116 | 92 98 115 99 | fsumdivc |  |-  ( ph -> ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 117 | 22 | zcnd |  |-  ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( A ` ( 1st ` k ) ) e. CC ) | 
						
							| 118 | 93 117 | sylan2 |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( A ` ( 1st ` k ) ) e. CC ) | 
						
							| 119 | 93 39 | sylan2 |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. ZZ ) | 
						
							| 120 | 119 | zcnd |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. CC ) | 
						
							| 121 | 98 | adantr |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ! ` ( P - 1 ) ) e. CC ) | 
						
							| 122 | 99 | adantr |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ! ` ( P - 1 ) ) =/= 0 ) | 
						
							| 123 | 118 120 121 122 | divassd |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 124 | 93 22 | sylan2 |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( A ` ( 1st ` k ) ) e. ZZ ) | 
						
							| 125 | 23 | a1i |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> RR e. { RR , CC } ) | 
						
							| 126 | 27 | a1i |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 127 | 30 | adantr |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P e. NN ) | 
						
							| 128 | 3 | adantr |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> M e. NN0 ) | 
						
							| 129 | 93 | adantl |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) | 
						
							| 130 | 129 35 | syl |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( 2nd ` k ) e. NN0 ) | 
						
							| 131 | 129 19 | syl |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( 1st ` k ) e. ( 0 ... M ) ) | 
						
							| 132 | 93 37 | sylan2 |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( 1st ` k ) e. RR ) | 
						
							| 133 | 125 126 127 128 7 130 106 107 131 132 | etransclem37 |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) | 
						
							| 134 | 109 | adantr |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ! ` ( P - 1 ) ) e. ZZ ) | 
						
							| 135 |  | dvdsval2 |  |-  ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ! ` ( P - 1 ) ) =/= 0 /\ ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. ZZ ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) <-> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) | 
						
							| 136 | 134 122 119 135 | syl3anc |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) <-> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) | 
						
							| 137 | 133 136 | mpbid |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 138 | 124 137 | zmulcld |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) e. ZZ ) | 
						
							| 139 | 123 138 | eqeltrd |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 140 | 92 139 | fsumzcl |  |-  ( ph -> sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 141 | 116 140 | eqeltrd |  |-  ( ph -> ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 142 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 143 |  | zabscl |  |-  ( ( A ` 0 ) e. ZZ -> ( abs ` ( A ` 0 ) ) e. ZZ ) | 
						
							| 144 | 82 143 | syl |  |-  ( ph -> ( abs ` ( A ` 0 ) ) e. ZZ ) | 
						
							| 145 |  | nn0abscl |  |-  ( ( A ` 0 ) e. ZZ -> ( abs ` ( A ` 0 ) ) e. NN0 ) | 
						
							| 146 | 82 145 | syl |  |-  ( ph -> ( abs ` ( A ` 0 ) ) e. NN0 ) | 
						
							| 147 | 103 2 | absne0d |  |-  ( ph -> ( abs ` ( A ` 0 ) ) =/= 0 ) | 
						
							| 148 |  | elnnne0 |  |-  ( ( abs ` ( A ` 0 ) ) e. NN <-> ( ( abs ` ( A ` 0 ) ) e. NN0 /\ ( abs ` ( A ` 0 ) ) =/= 0 ) ) | 
						
							| 149 | 146 147 148 | sylanbrc |  |-  ( ph -> ( abs ` ( A ` 0 ) ) e. NN ) | 
						
							| 150 | 149 | nnge1d |  |-  ( ph -> 1 <_ ( abs ` ( A ` 0 ) ) ) | 
						
							| 151 |  | zltlem1 |  |-  ( ( ( abs ` ( A ` 0 ) ) e. ZZ /\ P e. ZZ ) -> ( ( abs ` ( A ` 0 ) ) < P <-> ( abs ` ( A ` 0 ) ) <_ ( P - 1 ) ) ) | 
						
							| 152 | 144 48 151 | syl2anc |  |-  ( ph -> ( ( abs ` ( A ` 0 ) ) < P <-> ( abs ` ( A ` 0 ) ) <_ ( P - 1 ) ) ) | 
						
							| 153 | 5 152 | mpbid |  |-  ( ph -> ( abs ` ( A ` 0 ) ) <_ ( P - 1 ) ) | 
						
							| 154 | 142 52 144 150 153 | elfzd |  |-  ( ph -> ( abs ` ( A ` 0 ) ) e. ( 1 ... ( P - 1 ) ) ) | 
						
							| 155 |  | fzm1ndvds |  |-  ( ( P e. NN /\ ( abs ` ( A ` 0 ) ) e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( abs ` ( A ` 0 ) ) ) | 
						
							| 156 | 30 154 155 | syl2anc |  |-  ( ph -> -. P || ( abs ` ( A ` 0 ) ) ) | 
						
							| 157 |  | dvdsabsb |  |-  ( ( P e. ZZ /\ ( A ` 0 ) e. ZZ ) -> ( P || ( A ` 0 ) <-> P || ( abs ` ( A ` 0 ) ) ) ) | 
						
							| 158 | 48 82 157 | syl2anc |  |-  ( ph -> ( P || ( A ` 0 ) <-> P || ( abs ` ( A ` 0 ) ) ) ) | 
						
							| 159 | 156 158 | mtbird |  |-  ( ph -> -. P || ( A ` 0 ) ) | 
						
							| 160 | 3 4 6 7 | etransclem41 |  |-  ( ph -> -. P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 161 | 159 160 | jca |  |-  ( ph -> ( -. P || ( A ` 0 ) /\ -. P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 162 |  | pm4.56 |  |-  ( ( -. P || ( A ` 0 ) /\ -. P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) <-> -. ( P || ( A ` 0 ) \/ P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 163 | 161 162 | sylib |  |-  ( ph -> -. ( P || ( A ` 0 ) \/ P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 164 |  | euclemma |  |-  ( ( P e. Prime /\ ( A ` 0 ) e. ZZ /\ ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) -> ( P || ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) <-> ( P || ( A ` 0 ) \/ P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) ) | 
						
							| 165 | 4 82 112 164 | syl3anc |  |-  ( ph -> ( P || ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) <-> ( P || ( A ` 0 ) \/ P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) ) | 
						
							| 166 | 163 165 | mtbird |  |-  ( ph -> -. P || ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 167 | 105 | breq2d |  |-  ( ph -> ( P || ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) <-> P || ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) ) | 
						
							| 168 | 166 167 | mtbird |  |-  ( ph -> -. P || ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 169 | 48 | adantr |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P e. ZZ ) | 
						
							| 170 | 169 124 137 | 3jca |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( P e. ZZ /\ ( A ` ( 1st ` k ) ) e. ZZ /\ ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) | 
						
							| 171 |  | eldifn |  |-  ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) -> -. k e. { <. 0 , ( P - 1 ) >. } ) | 
						
							| 172 | 93 | adantr |  |-  ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) | 
						
							| 173 |  | 1st2nd2 |  |-  ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> k = <. ( 1st ` k ) , ( 2nd ` k ) >. ) | 
						
							| 174 | 172 173 | syl |  |-  ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> k = <. ( 1st ` k ) , ( 2nd ` k ) >. ) | 
						
							| 175 |  | simpr |  |-  ( ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) -> ( 1st ` k ) = 0 ) | 
						
							| 176 |  | simpl |  |-  ( ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) -> ( 2nd ` k ) = ( P - 1 ) ) | 
						
							| 177 | 175 176 | opeq12d |  |-  ( ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) -> <. ( 1st ` k ) , ( 2nd ` k ) >. = <. 0 , ( P - 1 ) >. ) | 
						
							| 178 | 177 | adantl |  |-  ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> <. ( 1st ` k ) , ( 2nd ` k ) >. = <. 0 , ( P - 1 ) >. ) | 
						
							| 179 | 174 178 | eqtrd |  |-  ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> k = <. 0 , ( P - 1 ) >. ) | 
						
							| 180 |  | velsn |  |-  ( k e. { <. 0 , ( P - 1 ) >. } <-> k = <. 0 , ( P - 1 ) >. ) | 
						
							| 181 | 179 180 | sylibr |  |-  ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> k e. { <. 0 , ( P - 1 ) >. } ) | 
						
							| 182 | 171 181 | mtand |  |-  ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) -> -. ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) | 
						
							| 183 | 182 | adantl |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> -. ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) | 
						
							| 184 | 127 128 7 130 131 183 107 | etransclem38 |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P || ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 185 |  | dvdsmultr2 |  |-  ( ( P e. ZZ /\ ( A ` ( 1st ` k ) ) e. ZZ /\ ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) -> ( P || ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) -> P || ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) ) ) | 
						
							| 186 | 170 184 185 | sylc |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P || ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 187 | 186 123 | breqtrrd |  |-  ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P || ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 188 | 92 48 139 187 | fsumdvds |  |-  ( ph -> P || sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 189 | 188 116 | breqtrrd |  |-  ( ph -> P || ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 190 | 48 102 114 141 168 189 | etransclem9 |  |-  ( ph -> ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) + ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) =/= 0 ) | 
						
							| 191 | 101 190 | eqnetrd |  |-  ( ph -> K =/= 0 ) |