Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem46.q |
|- ( ph -> Q e. ( ( Poly ` ZZ ) \ { 0p } ) ) |
2 |
|
etransclem46.qe0 |
|- ( ph -> ( Q ` _e ) = 0 ) |
3 |
|
etransclem46.a |
|- A = ( coeff ` Q ) |
4 |
|
etransclem46.m |
|- M = ( deg ` Q ) |
5 |
|
etransclem46.rex |
|- ( ph -> RR C_ RR ) |
6 |
|
etransclem46.s |
|- ( ph -> RR e. { RR , CC } ) |
7 |
|
etransclem46.x |
|- ( ph -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
8 |
|
etransclem46.p |
|- ( ph -> P e. NN ) |
9 |
|
etransclem46.f |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
10 |
|
etransclem46.l |
|- L = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) |
11 |
|
etransclem46.r |
|- R = ( ( M x. P ) + ( P - 1 ) ) |
12 |
|
etransclem46.g |
|- G = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
13 |
|
etransclem46.h |
|- O = ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) |
14 |
10
|
a1i |
|- ( ph -> L = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) |
15 |
13
|
oveq2i |
|- ( RR _D O ) = ( RR _D ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) |
16 |
15
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D O ) = ( RR _D ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) ) |
17 |
6
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> RR e. { RR , CC } ) |
18 |
|
ere |
|- _e e. RR |
19 |
18
|
recni |
|- _e e. CC |
20 |
19
|
a1i |
|- ( x e. RR -> _e e. CC ) |
21 |
|
recn |
|- ( x e. RR -> x e. CC ) |
22 |
21
|
negcld |
|- ( x e. RR -> -u x e. CC ) |
23 |
20 22
|
cxpcld |
|- ( x e. RR -> ( _e ^c -u x ) e. CC ) |
24 |
23
|
adantl |
|- ( ( ph /\ x e. RR ) -> ( _e ^c -u x ) e. CC ) |
25 |
|
simpr |
|- ( ( ph /\ x e. RR ) -> x e. RR ) |
26 |
|
fzfid |
|- ( ( ph /\ x e. RR ) -> ( 0 ... R ) e. Fin ) |
27 |
|
elfznn0 |
|- ( i e. ( 0 ... R ) -> i e. NN0 ) |
28 |
6
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> RR e. { RR , CC } ) |
29 |
7
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
30 |
8
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> P e. NN ) |
31 |
1
|
eldifad |
|- ( ph -> Q e. ( Poly ` ZZ ) ) |
32 |
|
dgrcl |
|- ( Q e. ( Poly ` ZZ ) -> ( deg ` Q ) e. NN0 ) |
33 |
31 32
|
syl |
|- ( ph -> ( deg ` Q ) e. NN0 ) |
34 |
4 33
|
eqeltrid |
|- ( ph -> M e. NN0 ) |
35 |
34
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> M e. NN0 ) |
36 |
|
simpr |
|- ( ( ph /\ i e. NN0 ) -> i e. NN0 ) |
37 |
28 29 30 35 9 36
|
etransclem33 |
|- ( ( ph /\ i e. NN0 ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
38 |
27 37
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
39 |
38
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
40 |
|
simplr |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> x e. RR ) |
41 |
39 40
|
ffvelrnd |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) |
42 |
26 41
|
fsumcl |
|- ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) |
43 |
12
|
fvmpt2 |
|- ( ( x e. RR /\ sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) -> ( G ` x ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
44 |
25 42 43
|
syl2anc |
|- ( ( ph /\ x e. RR ) -> ( G ` x ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
45 |
44 42
|
eqeltrd |
|- ( ( ph /\ x e. RR ) -> ( G ` x ) e. CC ) |
46 |
24 45
|
mulcld |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( G ` x ) ) e. CC ) |
47 |
46
|
negcld |
|- ( ( ph /\ x e. RR ) -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) e. CC ) |
48 |
47
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. RR ) -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) e. CC ) |
49 |
6 7
|
dvdmsscn |
|- ( ph -> RR C_ CC ) |
50 |
49 8 9
|
etransclem8 |
|- ( ph -> F : RR --> CC ) |
51 |
50
|
ffvelrnda |
|- ( ( ph /\ x e. RR ) -> ( F ` x ) e. CC ) |
52 |
24 51
|
mulcld |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
53 |
52
|
negcld |
|- ( ( ph /\ x e. RR ) -> -u ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
54 |
53
|
negcld |
|- ( ( ph /\ x e. RR ) -> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
55 |
54
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. RR ) -> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
56 |
18
|
a1i |
|- ( x e. RR -> _e e. RR ) |
57 |
|
0re |
|- 0 e. RR |
58 |
|
epos |
|- 0 < _e |
59 |
57 18 58
|
ltleii |
|- 0 <_ _e |
60 |
59
|
a1i |
|- ( x e. RR -> 0 <_ _e ) |
61 |
|
renegcl |
|- ( x e. RR -> -u x e. RR ) |
62 |
56 60 61
|
recxpcld |
|- ( x e. RR -> ( _e ^c -u x ) e. RR ) |
63 |
62
|
renegcld |
|- ( x e. RR -> -u ( _e ^c -u x ) e. RR ) |
64 |
63
|
adantl |
|- ( ( ph /\ x e. RR ) -> -u ( _e ^c -u x ) e. RR ) |
65 |
|
reelprrecn |
|- RR e. { RR , CC } |
66 |
65
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
67 |
|
cnelprrecn |
|- CC e. { RR , CC } |
68 |
67
|
a1i |
|- ( T. -> CC e. { RR , CC } ) |
69 |
22
|
adantl |
|- ( ( T. /\ x e. RR ) -> -u x e. CC ) |
70 |
|
neg1rr |
|- -u 1 e. RR |
71 |
70
|
a1i |
|- ( ( T. /\ x e. RR ) -> -u 1 e. RR ) |
72 |
19
|
a1i |
|- ( y e. CC -> _e e. CC ) |
73 |
|
id |
|- ( y e. CC -> y e. CC ) |
74 |
72 73
|
cxpcld |
|- ( y e. CC -> ( _e ^c y ) e. CC ) |
75 |
74
|
adantl |
|- ( ( T. /\ y e. CC ) -> ( _e ^c y ) e. CC ) |
76 |
21
|
adantl |
|- ( ( T. /\ x e. RR ) -> x e. CC ) |
77 |
|
1red |
|- ( ( T. /\ x e. RR ) -> 1 e. RR ) |
78 |
66
|
dvmptid |
|- ( T. -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
79 |
66 76 77 78
|
dvmptneg |
|- ( T. -> ( RR _D ( x e. RR |-> -u x ) ) = ( x e. RR |-> -u 1 ) ) |
80 |
|
epr |
|- _e e. RR+ |
81 |
|
dvcxp2 |
|- ( _e e. RR+ -> ( CC _D ( y e. CC |-> ( _e ^c y ) ) ) = ( y e. CC |-> ( ( log ` _e ) x. ( _e ^c y ) ) ) ) |
82 |
80 81
|
ax-mp |
|- ( CC _D ( y e. CC |-> ( _e ^c y ) ) ) = ( y e. CC |-> ( ( log ` _e ) x. ( _e ^c y ) ) ) |
83 |
|
loge |
|- ( log ` _e ) = 1 |
84 |
83
|
oveq1i |
|- ( ( log ` _e ) x. ( _e ^c y ) ) = ( 1 x. ( _e ^c y ) ) |
85 |
74
|
mulid2d |
|- ( y e. CC -> ( 1 x. ( _e ^c y ) ) = ( _e ^c y ) ) |
86 |
84 85
|
syl5eq |
|- ( y e. CC -> ( ( log ` _e ) x. ( _e ^c y ) ) = ( _e ^c y ) ) |
87 |
86
|
mpteq2ia |
|- ( y e. CC |-> ( ( log ` _e ) x. ( _e ^c y ) ) ) = ( y e. CC |-> ( _e ^c y ) ) |
88 |
82 87
|
eqtri |
|- ( CC _D ( y e. CC |-> ( _e ^c y ) ) ) = ( y e. CC |-> ( _e ^c y ) ) |
89 |
88
|
a1i |
|- ( T. -> ( CC _D ( y e. CC |-> ( _e ^c y ) ) ) = ( y e. CC |-> ( _e ^c y ) ) ) |
90 |
|
oveq2 |
|- ( y = -u x -> ( _e ^c y ) = ( _e ^c -u x ) ) |
91 |
66 68 69 71 75 75 79 89 90 90
|
dvmptco |
|- ( T. -> ( RR _D ( x e. RR |-> ( _e ^c -u x ) ) ) = ( x e. RR |-> ( ( _e ^c -u x ) x. -u 1 ) ) ) |
92 |
91
|
mptru |
|- ( RR _D ( x e. RR |-> ( _e ^c -u x ) ) ) = ( x e. RR |-> ( ( _e ^c -u x ) x. -u 1 ) ) |
93 |
70
|
a1i |
|- ( x e. RR -> -u 1 e. RR ) |
94 |
93
|
recnd |
|- ( x e. RR -> -u 1 e. CC ) |
95 |
23 94
|
mulcomd |
|- ( x e. RR -> ( ( _e ^c -u x ) x. -u 1 ) = ( -u 1 x. ( _e ^c -u x ) ) ) |
96 |
23
|
mulm1d |
|- ( x e. RR -> ( -u 1 x. ( _e ^c -u x ) ) = -u ( _e ^c -u x ) ) |
97 |
95 96
|
eqtrd |
|- ( x e. RR -> ( ( _e ^c -u x ) x. -u 1 ) = -u ( _e ^c -u x ) ) |
98 |
97
|
mpteq2ia |
|- ( x e. RR |-> ( ( _e ^c -u x ) x. -u 1 ) ) = ( x e. RR |-> -u ( _e ^c -u x ) ) |
99 |
92 98
|
eqtri |
|- ( RR _D ( x e. RR |-> ( _e ^c -u x ) ) ) = ( x e. RR |-> -u ( _e ^c -u x ) ) |
100 |
99
|
a1i |
|- ( ph -> ( RR _D ( x e. RR |-> ( _e ^c -u x ) ) ) = ( x e. RR |-> -u ( _e ^c -u x ) ) ) |
101 |
27
|
adantl |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> i e. NN0 ) |
102 |
|
peano2nn0 |
|- ( i e. NN0 -> ( i + 1 ) e. NN0 ) |
103 |
101 102
|
syl |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( i + 1 ) e. NN0 ) |
104 |
|
ovex |
|- ( i + 1 ) e. _V |
105 |
|
eleq1 |
|- ( j = ( i + 1 ) -> ( j e. NN0 <-> ( i + 1 ) e. NN0 ) ) |
106 |
105
|
anbi2d |
|- ( j = ( i + 1 ) -> ( ( ph /\ j e. NN0 ) <-> ( ph /\ ( i + 1 ) e. NN0 ) ) ) |
107 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` ( i + 1 ) ) ) |
108 |
107
|
feq1d |
|- ( j = ( i + 1 ) -> ( ( ( RR Dn F ) ` j ) : RR --> CC <-> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) ) |
109 |
106 108
|
imbi12d |
|- ( j = ( i + 1 ) -> ( ( ( ph /\ j e. NN0 ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) <-> ( ( ph /\ ( i + 1 ) e. NN0 ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) ) ) |
110 |
|
eleq1 |
|- ( i = j -> ( i e. NN0 <-> j e. NN0 ) ) |
111 |
110
|
anbi2d |
|- ( i = j -> ( ( ph /\ i e. NN0 ) <-> ( ph /\ j e. NN0 ) ) ) |
112 |
|
fveq2 |
|- ( i = j -> ( ( RR Dn F ) ` i ) = ( ( RR Dn F ) ` j ) ) |
113 |
112
|
feq1d |
|- ( i = j -> ( ( ( RR Dn F ) ` i ) : RR --> CC <-> ( ( RR Dn F ) ` j ) : RR --> CC ) ) |
114 |
111 113
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. NN0 ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) <-> ( ( ph /\ j e. NN0 ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) ) ) |
115 |
114 37
|
chvarvv |
|- ( ( ph /\ j e. NN0 ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) |
116 |
104 109 115
|
vtocl |
|- ( ( ph /\ ( i + 1 ) e. NN0 ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) |
117 |
103 116
|
syldan |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) |
118 |
117
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) |
119 |
118 40
|
ffvelrnd |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) e. CC ) |
120 |
26 119
|
fsumcl |
|- ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) e. CC ) |
121 |
8 34 9 12
|
etransclem39 |
|- ( ph -> G : RR --> CC ) |
122 |
121
|
feqmptd |
|- ( ph -> G = ( x e. RR |-> ( G ` x ) ) ) |
123 |
122
|
eqcomd |
|- ( ph -> ( x e. RR |-> ( G ` x ) ) = G ) |
124 |
123
|
oveq2d |
|- ( ph -> ( RR _D ( x e. RR |-> ( G ` x ) ) ) = ( RR _D G ) ) |
125 |
|
nfcv |
|- F/_ x F |
126 |
|
elfznn0 |
|- ( i e. ( 0 ... ( R + 1 ) ) -> i e. NN0 ) |
127 |
126 37
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
128 |
125 50 127 12
|
etransclem2 |
|- ( ph -> ( RR _D G ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
129 |
124 128
|
eqtrd |
|- ( ph -> ( RR _D ( x e. RR |-> ( G ` x ) ) ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
130 |
6 24 64 100 45 120 129
|
dvmptmul |
|- ( ph -> ( RR _D ( x e. RR |-> ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. RR |-> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) ) ) ) |
131 |
120 24
|
mulcomd |
|- ( ( ph /\ x e. RR ) -> ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) = ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
132 |
131
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) ) = ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) ) |
133 |
24
|
negcld |
|- ( ( ph /\ x e. RR ) -> -u ( _e ^c -u x ) e. CC ) |
134 |
133 45
|
mulcld |
|- ( ( ph /\ x e. RR ) -> ( -u ( _e ^c -u x ) x. ( G ` x ) ) e. CC ) |
135 |
24 120
|
mulcld |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) e. CC ) |
136 |
134 135
|
addcomd |
|- ( ( ph /\ x e. RR ) -> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) = ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + ( -u ( _e ^c -u x ) x. ( G ` x ) ) ) ) |
137 |
135 46
|
negsubd |
|- ( ( ph /\ x e. RR ) -> ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) = ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) - ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) |
138 |
24 45
|
mulneg1d |
|- ( ( ph /\ x e. RR ) -> ( -u ( _e ^c -u x ) x. ( G ` x ) ) = -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) |
139 |
138
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + ( -u ( _e ^c -u x ) x. ( G ` x ) ) ) = ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) |
140 |
24 120 45
|
subdid |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) ) = ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) - ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) |
141 |
137 139 140
|
3eqtr4d |
|- ( ( ph /\ x e. RR ) -> ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + ( -u ( _e ^c -u x ) x. ( G ` x ) ) ) = ( ( _e ^c -u x ) x. ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) ) ) |
142 |
44
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) = ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) ) |
143 |
26 119 41
|
fsumsub |
|- ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` i ) ` x ) ) = ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) ) |
144 |
|
fveq2 |
|- ( j = i -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` i ) ) |
145 |
144
|
fveq1d |
|- ( j = i -> ( ( ( RR Dn F ) ` j ) ` x ) = ( ( ( RR Dn F ) ` i ) ` x ) ) |
146 |
107
|
fveq1d |
|- ( j = ( i + 1 ) -> ( ( ( RR Dn F ) ` j ) ` x ) = ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) |
147 |
|
fveq2 |
|- ( j = 0 -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` 0 ) ) |
148 |
147
|
fveq1d |
|- ( j = 0 -> ( ( ( RR Dn F ) ` j ) ` x ) = ( ( ( RR Dn F ) ` 0 ) ` x ) ) |
149 |
|
fveq2 |
|- ( j = ( R + 1 ) -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` ( R + 1 ) ) ) |
150 |
149
|
fveq1d |
|- ( j = ( R + 1 ) -> ( ( ( RR Dn F ) ` j ) ` x ) = ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) ) |
151 |
8
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
152 |
34 151
|
nn0mulcld |
|- ( ph -> ( M x. P ) e. NN0 ) |
153 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
154 |
8 153
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
155 |
152 154
|
nn0addcld |
|- ( ph -> ( ( M x. P ) + ( P - 1 ) ) e. NN0 ) |
156 |
11 155
|
eqeltrid |
|- ( ph -> R e. NN0 ) |
157 |
156
|
adantr |
|- ( ( ph /\ x e. RR ) -> R e. NN0 ) |
158 |
157
|
nn0zd |
|- ( ( ph /\ x e. RR ) -> R e. ZZ ) |
159 |
|
peano2nn0 |
|- ( R e. NN0 -> ( R + 1 ) e. NN0 ) |
160 |
156 159
|
syl |
|- ( ph -> ( R + 1 ) e. NN0 ) |
161 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
162 |
160 161
|
eleqtrdi |
|- ( ph -> ( R + 1 ) e. ( ZZ>= ` 0 ) ) |
163 |
162
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( R + 1 ) e. ( ZZ>= ` 0 ) ) |
164 |
|
elfznn0 |
|- ( j e. ( 0 ... ( R + 1 ) ) -> j e. NN0 ) |
165 |
164 115
|
sylan2 |
|- ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) |
166 |
165
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) |
167 |
|
simplr |
|- ( ( ( ph /\ x e. RR ) /\ j e. ( 0 ... ( R + 1 ) ) ) -> x e. RR ) |
168 |
166 167
|
ffvelrnd |
|- ( ( ( ph /\ x e. RR ) /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( ( RR Dn F ) ` j ) ` x ) e. CC ) |
169 |
145 146 148 150 158 163 168
|
telfsum2 |
|- ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` i ) ` x ) ) = ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) ) |
170 |
142 143 169
|
3eqtr2d |
|- ( ( ph /\ x e. RR ) -> ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) = ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) ) |
171 |
170
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) ) = ( ( _e ^c -u x ) x. ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) ) ) |
172 |
156
|
nn0red |
|- ( ph -> R e. RR ) |
173 |
172
|
ltp1d |
|- ( ph -> R < ( R + 1 ) ) |
174 |
11 173
|
eqbrtrrid |
|- ( ph -> ( ( M x. P ) + ( P - 1 ) ) < ( R + 1 ) ) |
175 |
|
etransclem5 |
|- ( k e. ( 0 ... M ) |-> ( y e. RR |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. RR |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
176 |
6 7 8 34 9 160 174 175
|
etransclem32 |
|- ( ph -> ( ( RR Dn F ) ` ( R + 1 ) ) = ( x e. RR |-> 0 ) ) |
177 |
176
|
fveq1d |
|- ( ph -> ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) = ( ( x e. RR |-> 0 ) ` x ) ) |
178 |
|
eqid |
|- ( x e. RR |-> 0 ) = ( x e. RR |-> 0 ) |
179 |
178
|
fvmpt2 |
|- ( ( x e. RR /\ 0 e. RR ) -> ( ( x e. RR |-> 0 ) ` x ) = 0 ) |
180 |
57 179
|
mpan2 |
|- ( x e. RR -> ( ( x e. RR |-> 0 ) ` x ) = 0 ) |
181 |
177 180
|
sylan9eq |
|- ( ( ph /\ x e. RR ) -> ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) = 0 ) |
182 |
|
cnex |
|- CC e. _V |
183 |
182
|
a1i |
|- ( ph -> CC e. _V ) |
184 |
6 5
|
ssexd |
|- ( ph -> RR e. _V ) |
185 |
|
elpm2r |
|- ( ( ( CC e. _V /\ RR e. _V ) /\ ( F : RR --> CC /\ RR C_ RR ) ) -> F e. ( CC ^pm RR ) ) |
186 |
183 184 50 5 185
|
syl22anc |
|- ( ph -> F e. ( CC ^pm RR ) ) |
187 |
|
dvn0 |
|- ( ( RR C_ CC /\ F e. ( CC ^pm RR ) ) -> ( ( RR Dn F ) ` 0 ) = F ) |
188 |
49 186 187
|
syl2anc |
|- ( ph -> ( ( RR Dn F ) ` 0 ) = F ) |
189 |
188
|
fveq1d |
|- ( ph -> ( ( ( RR Dn F ) ` 0 ) ` x ) = ( F ` x ) ) |
190 |
189
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( ( ( RR Dn F ) ` 0 ) ` x ) = ( F ` x ) ) |
191 |
181 190
|
oveq12d |
|- ( ( ph /\ x e. RR ) -> ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) = ( 0 - ( F ` x ) ) ) |
192 |
|
df-neg |
|- -u ( F ` x ) = ( 0 - ( F ` x ) ) |
193 |
191 192
|
eqtr4di |
|- ( ( ph /\ x e. RR ) -> ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) = -u ( F ` x ) ) |
194 |
193
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) ) = ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) |
195 |
141 171 194
|
3eqtrd |
|- ( ( ph /\ x e. RR ) -> ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + ( -u ( _e ^c -u x ) x. ( G ` x ) ) ) = ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) |
196 |
132 136 195
|
3eqtrd |
|- ( ( ph /\ x e. RR ) -> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) ) = ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) |
197 |
196
|
mpteq2dva |
|- ( ph -> ( x e. RR |-> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) ) ) = ( x e. RR |-> ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) ) |
198 |
24 51
|
mulneg2d |
|- ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. -u ( F ` x ) ) = -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
199 |
198
|
mpteq2dva |
|- ( ph -> ( x e. RR |-> ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) = ( x e. RR |-> -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
200 |
130 197 199
|
3eqtrd |
|- ( ph -> ( RR _D ( x e. RR |-> ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. RR |-> -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
201 |
6 46 53 200
|
dvmptneg |
|- ( ph -> ( RR _D ( x e. RR |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. RR |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
202 |
201
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D ( x e. RR |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. RR |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
203 |
|
0red |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. RR ) |
204 |
|
elfzelz |
|- ( j e. ( 0 ... M ) -> j e. ZZ ) |
205 |
204
|
zred |
|- ( j e. ( 0 ... M ) -> j e. RR ) |
206 |
205
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. RR ) |
207 |
203 206
|
iccssred |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 [,] j ) C_ RR ) |
208 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
209 |
208
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
210 |
|
0red |
|- ( j e. ( 0 ... M ) -> 0 e. RR ) |
211 |
|
iccntr |
|- ( ( 0 e. RR /\ j e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] j ) ) = ( 0 (,) j ) ) |
212 |
210 205 211
|
syl2anc |
|- ( j e. ( 0 ... M ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] j ) ) = ( 0 (,) j ) ) |
213 |
212
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] j ) ) = ( 0 (,) j ) ) |
214 |
17 48 55 202 207 209 208 213
|
dvmptres2 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. ( 0 (,) j ) |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
215 |
19
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> _e e. CC ) |
216 |
|
elioore |
|- ( x e. ( 0 (,) j ) -> x e. RR ) |
217 |
216
|
recnd |
|- ( x e. ( 0 (,) j ) -> x e. CC ) |
218 |
217
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> x e. CC ) |
219 |
218
|
negcld |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> -u x e. CC ) |
220 |
215 219
|
cxpcld |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) e. CC ) |
221 |
50
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> F : RR --> CC ) |
222 |
216
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> x e. RR ) |
223 |
221 222
|
ffvelrnd |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> ( F ` x ) e. CC ) |
224 |
220 223
|
mulcld |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
225 |
224
|
negnegd |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) = ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
226 |
225
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 (,) j ) |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
227 |
226
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
228 |
16 214 227
|
3eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D O ) = ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) |
229 |
228
|
fveq1d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( RR _D O ) ` x ) = ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) ) |
230 |
229
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( RR _D O ) ` x ) = ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) ) |
231 |
|
simpr |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> x e. ( 0 (,) j ) ) |
232 |
|
eqid |
|- ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
233 |
232
|
fvmpt2 |
|- ( ( x e. ( 0 (,) j ) /\ ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) -> ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) = ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
234 |
231 224 233
|
syl2anc |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) = ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
235 |
234
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) = ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
236 |
230 235
|
eqtr2d |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) = ( ( RR _D O ) ` x ) ) |
237 |
236
|
itgeq2dv |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x = S. ( 0 (,) j ) ( ( RR _D O ) ` x ) _d x ) |
238 |
|
elfzle1 |
|- ( j e. ( 0 ... M ) -> 0 <_ j ) |
239 |
238
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 <_ j ) |
240 |
|
eqid |
|- ( x e. ( 0 [,] j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( x e. ( 0 [,] j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) |
241 |
|
eqidd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> ( y e. CC |-> ( _e ^c y ) ) = ( y e. CC |-> ( _e ^c y ) ) ) |
242 |
90
|
adantl |
|- ( ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) /\ y = -u x ) -> ( _e ^c y ) = ( _e ^c -u x ) ) |
243 |
210 205
|
iccssred |
|- ( j e. ( 0 ... M ) -> ( 0 [,] j ) C_ RR ) |
244 |
|
ax-resscn |
|- RR C_ CC |
245 |
243 244
|
sstrdi |
|- ( j e. ( 0 ... M ) -> ( 0 [,] j ) C_ CC ) |
246 |
245
|
sselda |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> x e. CC ) |
247 |
246
|
negcld |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> -u x e. CC ) |
248 |
19
|
a1i |
|- ( x e. CC -> _e e. CC ) |
249 |
|
negcl |
|- ( x e. CC -> -u x e. CC ) |
250 |
248 249
|
cxpcld |
|- ( x e. CC -> ( _e ^c -u x ) e. CC ) |
251 |
246 250
|
syl |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> ( _e ^c -u x ) e. CC ) |
252 |
241 242 247 251
|
fvmptd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) = ( _e ^c -u x ) ) |
253 |
252
|
eqcomd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> ( _e ^c -u x ) = ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) |
254 |
253
|
adantll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> ( _e ^c -u x ) = ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) |
255 |
254
|
mpteq2dva |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( _e ^c -u x ) ) = ( x e. ( 0 [,] j ) |-> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) ) |
256 |
|
mnfxr |
|- -oo e. RR* |
257 |
256
|
a1i |
|- ( _e e. RR+ -> -oo e. RR* ) |
258 |
|
0red |
|- ( _e e. RR+ -> 0 e. RR ) |
259 |
|
rpxr |
|- ( _e e. RR+ -> _e e. RR* ) |
260 |
|
rpgt0 |
|- ( _e e. RR+ -> 0 < _e ) |
261 |
257 258 259 260
|
gtnelioc |
|- ( _e e. RR+ -> -. _e e. ( -oo (,] 0 ) ) |
262 |
80 261
|
ax-mp |
|- -. _e e. ( -oo (,] 0 ) |
263 |
|
eldif |
|- ( _e e. ( CC \ ( -oo (,] 0 ) ) <-> ( _e e. CC /\ -. _e e. ( -oo (,] 0 ) ) ) |
264 |
19 262 263
|
mpbir2an |
|- _e e. ( CC \ ( -oo (,] 0 ) ) |
265 |
|
cxpcncf2 |
|- ( _e e. ( CC \ ( -oo (,] 0 ) ) -> ( y e. CC |-> ( _e ^c y ) ) e. ( CC -cn-> CC ) ) |
266 |
264 265
|
mp1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( y e. CC |-> ( _e ^c y ) ) e. ( CC -cn-> CC ) ) |
267 |
|
eqid |
|- ( x e. ( 0 [,] j ) |-> -u x ) = ( x e. ( 0 [,] j ) |-> -u x ) |
268 |
267
|
negcncf |
|- ( ( 0 [,] j ) C_ CC -> ( x e. ( 0 [,] j ) |-> -u x ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
269 |
245 268
|
syl |
|- ( j e. ( 0 ... M ) -> ( x e. ( 0 [,] j ) |-> -u x ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
270 |
269
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> -u x ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
271 |
266 270
|
cncfmpt1f |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
272 |
255 271
|
eqeltrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( _e ^c -u x ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
273 |
244
|
a1i |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> RR C_ CC ) |
274 |
8
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> P e. NN ) |
275 |
34
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> M e. NN0 ) |
276 |
|
etransclem6 |
|- ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) |
277 |
9 276
|
eqtri |
|- F = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) |
278 |
243
|
sselda |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> x e. RR ) |
279 |
278
|
adantll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> x e. RR ) |
280 |
273 274 275 277 279
|
etransclem13 |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> ( F ` x ) = prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) |
281 |
280
|
mpteq2dva |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( F ` x ) ) = ( x e. ( 0 [,] j ) |-> prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) |
282 |
245
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 [,] j ) C_ CC ) |
283 |
|
fzfid |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 ... M ) e. Fin ) |
284 |
279
|
recnd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> x e. CC ) |
285 |
284
|
3adant3 |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> x e. CC ) |
286 |
|
elfzelz |
|- ( k e. ( 0 ... M ) -> k e. ZZ ) |
287 |
286
|
zcnd |
|- ( k e. ( 0 ... M ) -> k e. CC ) |
288 |
287
|
3ad2ant3 |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> k e. CC ) |
289 |
285 288
|
subcld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> ( x - k ) e. CC ) |
290 |
8
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] j ) ) -> P e. NN ) |
291 |
290 153
|
syl |
|- ( ( ph /\ x e. ( 0 [,] j ) ) -> ( P - 1 ) e. NN0 ) |
292 |
151
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] j ) ) -> P e. NN0 ) |
293 |
291 292
|
ifcld |
|- ( ( ph /\ x e. ( 0 [,] j ) ) -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) |
294 |
293
|
3adant3 |
|- ( ( ph /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) |
295 |
294
|
3adant1r |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) |
296 |
289 295
|
expcld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) e. CC ) |
297 |
|
nfv |
|- F/ x ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) |
298 |
245
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> ( 0 [,] j ) C_ CC ) |
299 |
|
ssid |
|- CC C_ CC |
300 |
299
|
a1i |
|- ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> CC C_ CC ) |
301 |
298 300
|
idcncfg |
|- ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> x ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
302 |
287
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> k e. CC ) |
303 |
298 302 300
|
constcncfg |
|- ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> k ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
304 |
301 303
|
subcncf |
|- ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( x - k ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
305 |
304
|
adantll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( x - k ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
306 |
154 151
|
ifcld |
|- ( ph -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) |
307 |
|
expcncf |
|- ( if ( k = 0 , ( P - 1 ) , P ) e. NN0 -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) |
308 |
306 307
|
syl |
|- ( ph -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) |
309 |
308
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) |
310 |
299
|
a1i |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) -> CC C_ CC ) |
311 |
|
oveq1 |
|- ( y = ( x - k ) -> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) = ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) |
312 |
297 305 309 310 311
|
cncfcompt2 |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
313 |
282 283 296 312
|
fprodcncf |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
314 |
281 313
|
eqeltrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( F ` x ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
315 |
272 314
|
mulcncf |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
316 |
|
ioossicc |
|- ( 0 (,) j ) C_ ( 0 [,] j ) |
317 |
316
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 (,) j ) C_ ( 0 [,] j ) ) |
318 |
299
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> CC C_ CC ) |
319 |
224
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
320 |
240 315 317 318 319
|
cncfmptssg |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. ( ( 0 (,) j ) -cn-> CC ) ) |
321 |
228 320
|
eqeltrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D O ) e. ( ( 0 (,) j ) -cn-> CC ) ) |
322 |
7
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
323 |
8
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> P e. NN ) |
324 |
34
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> M e. NN0 ) |
325 |
|
oveq2 |
|- ( j = k -> ( x - j ) = ( x - k ) ) |
326 |
325
|
oveq1d |
|- ( j = k -> ( ( x - j ) ^ P ) = ( ( x - k ) ^ P ) ) |
327 |
326
|
cbvprodv |
|- prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) = prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) |
328 |
327
|
oveq2i |
|- ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) = ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) |
329 |
328
|
mpteq2i |
|- ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) |
330 |
9 329
|
eqtri |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) |
331 |
17 322 323 324 330 203 206
|
etransclem18 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. L^1 ) |
332 |
228 331
|
eqeltrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D O ) e. L^1 ) |
333 |
|
eqid |
|- ( x e. RR |-> ( G ` x ) ) = ( x e. RR |-> ( G ` x ) ) |
334 |
6 7 8 34 9 12
|
etransclem43 |
|- ( ph -> G e. ( RR -cn-> CC ) ) |
335 |
123 334
|
eqeltrd |
|- ( ph -> ( x e. RR |-> ( G ` x ) ) e. ( RR -cn-> CC ) ) |
336 |
335
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. RR |-> ( G ` x ) ) e. ( RR -cn-> CC ) ) |
337 |
121
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> G : RR --> CC ) |
338 |
337 279
|
ffvelrnd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> ( G ` x ) e. CC ) |
339 |
333 336 207 318 338
|
cncfmptssg |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( G ` x ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
340 |
272 339
|
mulcncf |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( ( _e ^c -u x ) x. ( G ` x ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
341 |
340
|
negcncfg |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) |
342 |
13 341
|
eqeltrid |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> O e. ( ( 0 [,] j ) -cn-> CC ) ) |
343 |
203 206 239 321 332 342
|
ftc2 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( RR _D O ) ` x ) _d x = ( ( O ` j ) - ( O ` 0 ) ) ) |
344 |
|
negeq |
|- ( x = j -> -u x = -u j ) |
345 |
344
|
oveq2d |
|- ( x = j -> ( _e ^c -u x ) = ( _e ^c -u j ) ) |
346 |
|
fveq2 |
|- ( x = j -> ( G ` x ) = ( G ` j ) ) |
347 |
345 346
|
oveq12d |
|- ( x = j -> ( ( _e ^c -u x ) x. ( G ` x ) ) = ( ( _e ^c -u j ) x. ( G ` j ) ) ) |
348 |
347
|
negeqd |
|- ( x = j -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) = -u ( ( _e ^c -u j ) x. ( G ` j ) ) ) |
349 |
203
|
rexrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. RR* ) |
350 |
206
|
rexrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. RR* ) |
351 |
|
ubicc2 |
|- ( ( 0 e. RR* /\ j e. RR* /\ 0 <_ j ) -> j e. ( 0 [,] j ) ) |
352 |
349 350 239 351
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. ( 0 [,] j ) ) |
353 |
19
|
a1i |
|- ( j e. ( 0 ... M ) -> _e e. CC ) |
354 |
205
|
recnd |
|- ( j e. ( 0 ... M ) -> j e. CC ) |
355 |
354
|
negcld |
|- ( j e. ( 0 ... M ) -> -u j e. CC ) |
356 |
353 355
|
cxpcld |
|- ( j e. ( 0 ... M ) -> ( _e ^c -u j ) e. CC ) |
357 |
356
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( _e ^c -u j ) e. CC ) |
358 |
121
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> G : RR --> CC ) |
359 |
358 206
|
ffvelrnd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( G ` j ) e. CC ) |
360 |
357 359
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( _e ^c -u j ) x. ( G ` j ) ) e. CC ) |
361 |
360
|
negcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> -u ( ( _e ^c -u j ) x. ( G ` j ) ) e. CC ) |
362 |
13 348 352 361
|
fvmptd3 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( O ` j ) = -u ( ( _e ^c -u j ) x. ( G ` j ) ) ) |
363 |
13
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> O = ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) |
364 |
|
negeq |
|- ( x = 0 -> -u x = -u 0 ) |
365 |
364
|
oveq2d |
|- ( x = 0 -> ( _e ^c -u x ) = ( _e ^c -u 0 ) ) |
366 |
|
neg0 |
|- -u 0 = 0 |
367 |
366
|
oveq2i |
|- ( _e ^c -u 0 ) = ( _e ^c 0 ) |
368 |
|
cxp0 |
|- ( _e e. CC -> ( _e ^c 0 ) = 1 ) |
369 |
19 368
|
ax-mp |
|- ( _e ^c 0 ) = 1 |
370 |
367 369
|
eqtri |
|- ( _e ^c -u 0 ) = 1 |
371 |
365 370
|
eqtrdi |
|- ( x = 0 -> ( _e ^c -u x ) = 1 ) |
372 |
|
fveq2 |
|- ( x = 0 -> ( G ` x ) = ( G ` 0 ) ) |
373 |
371 372
|
oveq12d |
|- ( x = 0 -> ( ( _e ^c -u x ) x. ( G ` x ) ) = ( 1 x. ( G ` 0 ) ) ) |
374 |
|
0red |
|- ( ph -> 0 e. RR ) |
375 |
121 374
|
ffvelrnd |
|- ( ph -> ( G ` 0 ) e. CC ) |
376 |
375
|
mulid2d |
|- ( ph -> ( 1 x. ( G ` 0 ) ) = ( G ` 0 ) ) |
377 |
373 376
|
sylan9eqr |
|- ( ( ph /\ x = 0 ) -> ( ( _e ^c -u x ) x. ( G ` x ) ) = ( G ` 0 ) ) |
378 |
377
|
negeqd |
|- ( ( ph /\ x = 0 ) -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) = -u ( G ` 0 ) ) |
379 |
378
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x = 0 ) -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) = -u ( G ` 0 ) ) |
380 |
|
lbicc2 |
|- ( ( 0 e. RR* /\ j e. RR* /\ 0 <_ j ) -> 0 e. ( 0 [,] j ) ) |
381 |
349 350 239 380
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. ( 0 [,] j ) ) |
382 |
375
|
negcld |
|- ( ph -> -u ( G ` 0 ) e. CC ) |
383 |
382
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> -u ( G ` 0 ) e. CC ) |
384 |
363 379 381 383
|
fvmptd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( O ` 0 ) = -u ( G ` 0 ) ) |
385 |
362 384
|
oveq12d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( O ` j ) - ( O ` 0 ) ) = ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) - -u ( G ` 0 ) ) ) |
386 |
375
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( G ` 0 ) e. CC ) |
387 |
361 386
|
subnegd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) - -u ( G ` 0 ) ) = ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) + ( G ` 0 ) ) ) |
388 |
361 386
|
addcomd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) + ( G ` 0 ) ) = ( ( G ` 0 ) + -u ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) |
389 |
386 360
|
negsubd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( G ` 0 ) + -u ( ( _e ^c -u j ) x. ( G ` j ) ) ) = ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) |
390 |
388 389
|
eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) + ( G ` 0 ) ) = ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) |
391 |
385 387 390
|
3eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( O ` j ) - ( O ` 0 ) ) = ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) |
392 |
237 343 391
|
3eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x = ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) |
393 |
392
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) = ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) |
394 |
31
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> Q e. ( Poly ` ZZ ) ) |
395 |
|
0zd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. ZZ ) |
396 |
3
|
coef2 |
|- ( ( Q e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> A : NN0 --> ZZ ) |
397 |
394 395 396
|
syl2anc |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> A : NN0 --> ZZ ) |
398 |
|
elfznn0 |
|- ( j e. ( 0 ... M ) -> j e. NN0 ) |
399 |
398
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. NN0 ) |
400 |
397 399
|
ffvelrnd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. ZZ ) |
401 |
400
|
zcnd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. CC ) |
402 |
353 354
|
cxpcld |
|- ( j e. ( 0 ... M ) -> ( _e ^c j ) e. CC ) |
403 |
402
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( _e ^c j ) e. CC ) |
404 |
401 403
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( _e ^c j ) ) e. CC ) |
405 |
404 386 360
|
subdid |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) = ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) |
406 |
393 405
|
eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) = ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) |
407 |
406
|
sumeq2dv |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) = sum_ j e. ( 0 ... M ) ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) |
408 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
409 |
404 386
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) e. CC ) |
410 |
404 360
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) e. CC ) |
411 |
408 409 410
|
fsumsub |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) |
412 |
2
|
eqcomd |
|- ( ph -> 0 = ( Q ` _e ) ) |
413 |
3 4
|
coeid2 |
|- ( ( Q e. ( Poly ` ZZ ) /\ _e e. CC ) -> ( Q ` _e ) = sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^ j ) ) ) |
414 |
31 19 413
|
sylancl |
|- ( ph -> ( Q ` _e ) = sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^ j ) ) ) |
415 |
|
cxpexp |
|- ( ( _e e. CC /\ j e. NN0 ) -> ( _e ^c j ) = ( _e ^ j ) ) |
416 |
353 398 415
|
syl2anc |
|- ( j e. ( 0 ... M ) -> ( _e ^c j ) = ( _e ^ j ) ) |
417 |
416
|
eqcomd |
|- ( j e. ( 0 ... M ) -> ( _e ^ j ) = ( _e ^c j ) ) |
418 |
417
|
oveq2d |
|- ( j e. ( 0 ... M ) -> ( ( A ` j ) x. ( _e ^ j ) ) = ( ( A ` j ) x. ( _e ^c j ) ) ) |
419 |
418
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( _e ^ j ) ) = ( ( A ` j ) x. ( _e ^c j ) ) ) |
420 |
419
|
sumeq2dv |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^ j ) ) = sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^c j ) ) ) |
421 |
412 414 420
|
3eqtrd |
|- ( ph -> 0 = sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^c j ) ) ) |
422 |
421
|
oveq1d |
|- ( ph -> ( 0 x. ( G ` 0 ) ) = ( sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) ) |
423 |
375
|
mul02d |
|- ( ph -> ( 0 x. ( G ` 0 ) ) = 0 ) |
424 |
408 375 404
|
fsummulc1 |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) ) |
425 |
422 423 424
|
3eqtr3rd |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) = 0 ) |
426 |
|
fveq2 |
|- ( x = j -> ( ( ( RR Dn F ) ` i ) ` x ) = ( ( ( RR Dn F ) ` i ) ` j ) ) |
427 |
426
|
sumeq2sdv |
|- ( x = j -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) |
428 |
|
fzfid |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 ... R ) e. Fin ) |
429 |
38
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
430 |
206
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ i e. ( 0 ... R ) ) -> j e. RR ) |
431 |
429 430
|
ffvelrnd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ i e. ( 0 ... R ) ) -> ( ( ( RR Dn F ) ` i ) ` j ) e. CC ) |
432 |
428 431
|
fsumcl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) e. CC ) |
433 |
12 427 206 432
|
fvmptd3 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( G ` j ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) |
434 |
433
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( _e ^c -u j ) x. ( G ` j ) ) = ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
435 |
434
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) = ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) |
436 |
357 432
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) e. CC ) |
437 |
401 403 436
|
mulassd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) = ( ( A ` j ) x. ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) ) |
438 |
369
|
eqcomi |
|- 1 = ( _e ^c 0 ) |
439 |
438
|
a1i |
|- ( j e. ( 0 ... M ) -> 1 = ( _e ^c 0 ) ) |
440 |
354
|
negidd |
|- ( j e. ( 0 ... M ) -> ( j + -u j ) = 0 ) |
441 |
440
|
eqcomd |
|- ( j e. ( 0 ... M ) -> 0 = ( j + -u j ) ) |
442 |
441
|
oveq2d |
|- ( j e. ( 0 ... M ) -> ( _e ^c 0 ) = ( _e ^c ( j + -u j ) ) ) |
443 |
57 58
|
gtneii |
|- _e =/= 0 |
444 |
443
|
a1i |
|- ( j e. ( 0 ... M ) -> _e =/= 0 ) |
445 |
353 444 354 355
|
cxpaddd |
|- ( j e. ( 0 ... M ) -> ( _e ^c ( j + -u j ) ) = ( ( _e ^c j ) x. ( _e ^c -u j ) ) ) |
446 |
439 442 445
|
3eqtrd |
|- ( j e. ( 0 ... M ) -> 1 = ( ( _e ^c j ) x. ( _e ^c -u j ) ) ) |
447 |
446
|
oveq1d |
|- ( j e. ( 0 ... M ) -> ( 1 x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = ( ( ( _e ^c j ) x. ( _e ^c -u j ) ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
448 |
447
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 1 x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = ( ( ( _e ^c j ) x. ( _e ^c -u j ) ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
449 |
432
|
mulid2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 1 x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) |
450 |
403 357 432
|
mulassd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( _e ^c j ) x. ( _e ^c -u j ) ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) |
451 |
448 449 450
|
3eqtr3rd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) |
452 |
451
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) = ( ( A ` j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
453 |
428 401 431
|
fsummulc2 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
454 |
452 453
|
eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) = sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
455 |
435 437 454
|
3eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) = sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
456 |
455
|
sumeq2dv |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) = sum_ j e. ( 0 ... M ) sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
457 |
|
vex |
|- j e. _V |
458 |
|
vex |
|- i e. _V |
459 |
457 458
|
op1std |
|- ( k = <. j , i >. -> ( 1st ` k ) = j ) |
460 |
459
|
fveq2d |
|- ( k = <. j , i >. -> ( A ` ( 1st ` k ) ) = ( A ` j ) ) |
461 |
457 458
|
op2ndd |
|- ( k = <. j , i >. -> ( 2nd ` k ) = i ) |
462 |
461
|
fveq2d |
|- ( k = <. j , i >. -> ( ( RR Dn F ) ` ( 2nd ` k ) ) = ( ( RR Dn F ) ` i ) ) |
463 |
462 459
|
fveq12d |
|- ( k = <. j , i >. -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) = ( ( ( RR Dn F ) ` i ) ` j ) ) |
464 |
460 463
|
oveq12d |
|- ( k = <. j , i >. -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) = ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) |
465 |
|
fzfid |
|- ( ph -> ( 0 ... R ) e. Fin ) |
466 |
401
|
adantrr |
|- ( ( ph /\ ( j e. ( 0 ... M ) /\ i e. ( 0 ... R ) ) ) -> ( A ` j ) e. CC ) |
467 |
431
|
anasss |
|- ( ( ph /\ ( j e. ( 0 ... M ) /\ i e. ( 0 ... R ) ) ) -> ( ( ( RR Dn F ) ` i ) ` j ) e. CC ) |
468 |
466 467
|
mulcld |
|- ( ( ph /\ ( j e. ( 0 ... M ) /\ i e. ( 0 ... R ) ) ) -> ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) e. CC ) |
469 |
464 408 465 468
|
fsumxp |
|- ( ph -> sum_ j e. ( 0 ... M ) sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) = sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) |
470 |
456 469
|
eqtrd |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) = sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) |
471 |
425 470
|
oveq12d |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) = ( 0 - sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) ) |
472 |
|
df-neg |
|- -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) = ( 0 - sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) |
473 |
472
|
eqcomi |
|- ( 0 - sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) = -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) |
474 |
473
|
a1i |
|- ( ph -> ( 0 - sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) = -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) |
475 |
411 471 474
|
3eqtrd |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) = -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) |
476 |
14 407 475
|
3eqtrd |
|- ( ph -> L = -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) |
477 |
476
|
oveq1d |
|- ( ph -> ( L / ( ! ` ( P - 1 ) ) ) = ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |