| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem46.q |  |-  ( ph -> Q e. ( ( Poly ` ZZ ) \ { 0p } ) ) | 
						
							| 2 |  | etransclem46.qe0 |  |-  ( ph -> ( Q ` _e ) = 0 ) | 
						
							| 3 |  | etransclem46.a |  |-  A = ( coeff ` Q ) | 
						
							| 4 |  | etransclem46.m |  |-  M = ( deg ` Q ) | 
						
							| 5 |  | etransclem46.rex |  |-  ( ph -> RR C_ RR ) | 
						
							| 6 |  | etransclem46.s |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 7 |  | etransclem46.x |  |-  ( ph -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 8 |  | etransclem46.p |  |-  ( ph -> P e. NN ) | 
						
							| 9 |  | etransclem46.f |  |-  F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 10 |  | etransclem46.l |  |-  L = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) | 
						
							| 11 |  | etransclem46.r |  |-  R = ( ( M x. P ) + ( P - 1 ) ) | 
						
							| 12 |  | etransclem46.g |  |-  G = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) | 
						
							| 13 |  | etransclem46.h |  |-  O = ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) | 
						
							| 14 | 10 | a1i |  |-  ( ph -> L = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) | 
						
							| 15 | 13 | oveq2i |  |-  ( RR _D O ) = ( RR _D ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) | 
						
							| 16 | 15 | a1i |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D O ) = ( RR _D ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) ) | 
						
							| 17 | 6 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> RR e. { RR , CC } ) | 
						
							| 18 |  | ere |  |-  _e e. RR | 
						
							| 19 | 18 | recni |  |-  _e e. CC | 
						
							| 20 | 19 | a1i |  |-  ( x e. RR -> _e e. CC ) | 
						
							| 21 |  | recn |  |-  ( x e. RR -> x e. CC ) | 
						
							| 22 | 21 | negcld |  |-  ( x e. RR -> -u x e. CC ) | 
						
							| 23 | 20 22 | cxpcld |  |-  ( x e. RR -> ( _e ^c -u x ) e. CC ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ph /\ x e. RR ) -> ( _e ^c -u x ) e. CC ) | 
						
							| 25 |  | simpr |  |-  ( ( ph /\ x e. RR ) -> x e. RR ) | 
						
							| 26 |  | fzfid |  |-  ( ( ph /\ x e. RR ) -> ( 0 ... R ) e. Fin ) | 
						
							| 27 |  | elfznn0 |  |-  ( i e. ( 0 ... R ) -> i e. NN0 ) | 
						
							| 28 | 6 | adantr |  |-  ( ( ph /\ i e. NN0 ) -> RR e. { RR , CC } ) | 
						
							| 29 | 7 | adantr |  |-  ( ( ph /\ i e. NN0 ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 30 | 8 | adantr |  |-  ( ( ph /\ i e. NN0 ) -> P e. NN ) | 
						
							| 31 | 1 | eldifad |  |-  ( ph -> Q e. ( Poly ` ZZ ) ) | 
						
							| 32 |  | dgrcl |  |-  ( Q e. ( Poly ` ZZ ) -> ( deg ` Q ) e. NN0 ) | 
						
							| 33 | 31 32 | syl |  |-  ( ph -> ( deg ` Q ) e. NN0 ) | 
						
							| 34 | 4 33 | eqeltrid |  |-  ( ph -> M e. NN0 ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ i e. NN0 ) -> M e. NN0 ) | 
						
							| 36 |  | simpr |  |-  ( ( ph /\ i e. NN0 ) -> i e. NN0 ) | 
						
							| 37 | 28 29 30 35 9 36 | etransclem33 |  |-  ( ( ph /\ i e. NN0 ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) | 
						
							| 38 | 27 37 | sylan2 |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) | 
						
							| 39 | 38 | adantlr |  |-  ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) | 
						
							| 40 |  | simplr |  |-  ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> x e. RR ) | 
						
							| 41 | 39 40 | ffvelcdmd |  |-  ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) | 
						
							| 42 | 26 41 | fsumcl |  |-  ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) | 
						
							| 43 | 12 | fvmpt2 |  |-  ( ( x e. RR /\ sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) -> ( G ` x ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) | 
						
							| 44 | 25 42 43 | syl2anc |  |-  ( ( ph /\ x e. RR ) -> ( G ` x ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) | 
						
							| 45 | 44 42 | eqeltrd |  |-  ( ( ph /\ x e. RR ) -> ( G ` x ) e. CC ) | 
						
							| 46 | 24 45 | mulcld |  |-  ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( G ` x ) ) e. CC ) | 
						
							| 47 | 46 | negcld |  |-  ( ( ph /\ x e. RR ) -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) e. CC ) | 
						
							| 48 | 47 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. RR ) -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) e. CC ) | 
						
							| 49 | 6 7 | dvdmsscn |  |-  ( ph -> RR C_ CC ) | 
						
							| 50 | 49 8 9 | etransclem8 |  |-  ( ph -> F : RR --> CC ) | 
						
							| 51 | 50 | ffvelcdmda |  |-  ( ( ph /\ x e. RR ) -> ( F ` x ) e. CC ) | 
						
							| 52 | 24 51 | mulcld |  |-  ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) | 
						
							| 53 | 52 | negcld |  |-  ( ( ph /\ x e. RR ) -> -u ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) | 
						
							| 54 | 53 | negcld |  |-  ( ( ph /\ x e. RR ) -> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) | 
						
							| 55 | 54 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. RR ) -> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) | 
						
							| 56 | 18 | a1i |  |-  ( x e. RR -> _e e. RR ) | 
						
							| 57 |  | 0re |  |-  0 e. RR | 
						
							| 58 |  | epos |  |-  0 < _e | 
						
							| 59 | 57 18 58 | ltleii |  |-  0 <_ _e | 
						
							| 60 | 59 | a1i |  |-  ( x e. RR -> 0 <_ _e ) | 
						
							| 61 |  | renegcl |  |-  ( x e. RR -> -u x e. RR ) | 
						
							| 62 | 56 60 61 | recxpcld |  |-  ( x e. RR -> ( _e ^c -u x ) e. RR ) | 
						
							| 63 | 62 | renegcld |  |-  ( x e. RR -> -u ( _e ^c -u x ) e. RR ) | 
						
							| 64 | 63 | adantl |  |-  ( ( ph /\ x e. RR ) -> -u ( _e ^c -u x ) e. RR ) | 
						
							| 65 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 66 | 65 | a1i |  |-  ( T. -> RR e. { RR , CC } ) | 
						
							| 67 |  | cnelprrecn |  |-  CC e. { RR , CC } | 
						
							| 68 | 67 | a1i |  |-  ( T. -> CC e. { RR , CC } ) | 
						
							| 69 | 22 | adantl |  |-  ( ( T. /\ x e. RR ) -> -u x e. CC ) | 
						
							| 70 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 71 | 70 | a1i |  |-  ( ( T. /\ x e. RR ) -> -u 1 e. RR ) | 
						
							| 72 | 19 | a1i |  |-  ( y e. CC -> _e e. CC ) | 
						
							| 73 |  | id |  |-  ( y e. CC -> y e. CC ) | 
						
							| 74 | 72 73 | cxpcld |  |-  ( y e. CC -> ( _e ^c y ) e. CC ) | 
						
							| 75 | 74 | adantl |  |-  ( ( T. /\ y e. CC ) -> ( _e ^c y ) e. CC ) | 
						
							| 76 | 21 | adantl |  |-  ( ( T. /\ x e. RR ) -> x e. CC ) | 
						
							| 77 |  | 1red |  |-  ( ( T. /\ x e. RR ) -> 1 e. RR ) | 
						
							| 78 | 66 | dvmptid |  |-  ( T. -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) | 
						
							| 79 | 66 76 77 78 | dvmptneg |  |-  ( T. -> ( RR _D ( x e. RR |-> -u x ) ) = ( x e. RR |-> -u 1 ) ) | 
						
							| 80 |  | epr |  |-  _e e. RR+ | 
						
							| 81 |  | dvcxp2 |  |-  ( _e e. RR+ -> ( CC _D ( y e. CC |-> ( _e ^c y ) ) ) = ( y e. CC |-> ( ( log ` _e ) x. ( _e ^c y ) ) ) ) | 
						
							| 82 | 80 81 | ax-mp |  |-  ( CC _D ( y e. CC |-> ( _e ^c y ) ) ) = ( y e. CC |-> ( ( log ` _e ) x. ( _e ^c y ) ) ) | 
						
							| 83 |  | loge |  |-  ( log ` _e ) = 1 | 
						
							| 84 | 83 | oveq1i |  |-  ( ( log ` _e ) x. ( _e ^c y ) ) = ( 1 x. ( _e ^c y ) ) | 
						
							| 85 | 74 | mullidd |  |-  ( y e. CC -> ( 1 x. ( _e ^c y ) ) = ( _e ^c y ) ) | 
						
							| 86 | 84 85 | eqtrid |  |-  ( y e. CC -> ( ( log ` _e ) x. ( _e ^c y ) ) = ( _e ^c y ) ) | 
						
							| 87 | 86 | mpteq2ia |  |-  ( y e. CC |-> ( ( log ` _e ) x. ( _e ^c y ) ) ) = ( y e. CC |-> ( _e ^c y ) ) | 
						
							| 88 | 82 87 | eqtri |  |-  ( CC _D ( y e. CC |-> ( _e ^c y ) ) ) = ( y e. CC |-> ( _e ^c y ) ) | 
						
							| 89 | 88 | a1i |  |-  ( T. -> ( CC _D ( y e. CC |-> ( _e ^c y ) ) ) = ( y e. CC |-> ( _e ^c y ) ) ) | 
						
							| 90 |  | oveq2 |  |-  ( y = -u x -> ( _e ^c y ) = ( _e ^c -u x ) ) | 
						
							| 91 | 66 68 69 71 75 75 79 89 90 90 | dvmptco |  |-  ( T. -> ( RR _D ( x e. RR |-> ( _e ^c -u x ) ) ) = ( x e. RR |-> ( ( _e ^c -u x ) x. -u 1 ) ) ) | 
						
							| 92 | 91 | mptru |  |-  ( RR _D ( x e. RR |-> ( _e ^c -u x ) ) ) = ( x e. RR |-> ( ( _e ^c -u x ) x. -u 1 ) ) | 
						
							| 93 | 70 | a1i |  |-  ( x e. RR -> -u 1 e. RR ) | 
						
							| 94 | 93 | recnd |  |-  ( x e. RR -> -u 1 e. CC ) | 
						
							| 95 | 23 94 | mulcomd |  |-  ( x e. RR -> ( ( _e ^c -u x ) x. -u 1 ) = ( -u 1 x. ( _e ^c -u x ) ) ) | 
						
							| 96 | 23 | mulm1d |  |-  ( x e. RR -> ( -u 1 x. ( _e ^c -u x ) ) = -u ( _e ^c -u x ) ) | 
						
							| 97 | 95 96 | eqtrd |  |-  ( x e. RR -> ( ( _e ^c -u x ) x. -u 1 ) = -u ( _e ^c -u x ) ) | 
						
							| 98 | 97 | mpteq2ia |  |-  ( x e. RR |-> ( ( _e ^c -u x ) x. -u 1 ) ) = ( x e. RR |-> -u ( _e ^c -u x ) ) | 
						
							| 99 | 92 98 | eqtri |  |-  ( RR _D ( x e. RR |-> ( _e ^c -u x ) ) ) = ( x e. RR |-> -u ( _e ^c -u x ) ) | 
						
							| 100 | 99 | a1i |  |-  ( ph -> ( RR _D ( x e. RR |-> ( _e ^c -u x ) ) ) = ( x e. RR |-> -u ( _e ^c -u x ) ) ) | 
						
							| 101 | 27 | adantl |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> i e. NN0 ) | 
						
							| 102 |  | peano2nn0 |  |-  ( i e. NN0 -> ( i + 1 ) e. NN0 ) | 
						
							| 103 | 101 102 | syl |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( i + 1 ) e. NN0 ) | 
						
							| 104 |  | ovex |  |-  ( i + 1 ) e. _V | 
						
							| 105 |  | eleq1 |  |-  ( j = ( i + 1 ) -> ( j e. NN0 <-> ( i + 1 ) e. NN0 ) ) | 
						
							| 106 | 105 | anbi2d |  |-  ( j = ( i + 1 ) -> ( ( ph /\ j e. NN0 ) <-> ( ph /\ ( i + 1 ) e. NN0 ) ) ) | 
						
							| 107 |  | fveq2 |  |-  ( j = ( i + 1 ) -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` ( i + 1 ) ) ) | 
						
							| 108 | 107 | feq1d |  |-  ( j = ( i + 1 ) -> ( ( ( RR Dn F ) ` j ) : RR --> CC <-> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) ) | 
						
							| 109 | 106 108 | imbi12d |  |-  ( j = ( i + 1 ) -> ( ( ( ph /\ j e. NN0 ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) <-> ( ( ph /\ ( i + 1 ) e. NN0 ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) ) ) | 
						
							| 110 |  | eleq1 |  |-  ( i = j -> ( i e. NN0 <-> j e. NN0 ) ) | 
						
							| 111 | 110 | anbi2d |  |-  ( i = j -> ( ( ph /\ i e. NN0 ) <-> ( ph /\ j e. NN0 ) ) ) | 
						
							| 112 |  | fveq2 |  |-  ( i = j -> ( ( RR Dn F ) ` i ) = ( ( RR Dn F ) ` j ) ) | 
						
							| 113 | 112 | feq1d |  |-  ( i = j -> ( ( ( RR Dn F ) ` i ) : RR --> CC <-> ( ( RR Dn F ) ` j ) : RR --> CC ) ) | 
						
							| 114 | 111 113 | imbi12d |  |-  ( i = j -> ( ( ( ph /\ i e. NN0 ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) <-> ( ( ph /\ j e. NN0 ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) ) ) | 
						
							| 115 | 114 37 | chvarvv |  |-  ( ( ph /\ j e. NN0 ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) | 
						
							| 116 | 104 109 115 | vtocl |  |-  ( ( ph /\ ( i + 1 ) e. NN0 ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) | 
						
							| 117 | 103 116 | syldan |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) | 
						
							| 118 | 117 | adantlr |  |-  ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) | 
						
							| 119 | 118 40 | ffvelcdmd |  |-  ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) e. CC ) | 
						
							| 120 | 26 119 | fsumcl |  |-  ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) e. CC ) | 
						
							| 121 | 8 34 9 12 | etransclem39 |  |-  ( ph -> G : RR --> CC ) | 
						
							| 122 | 121 | feqmptd |  |-  ( ph -> G = ( x e. RR |-> ( G ` x ) ) ) | 
						
							| 123 | 122 | eqcomd |  |-  ( ph -> ( x e. RR |-> ( G ` x ) ) = G ) | 
						
							| 124 | 123 | oveq2d |  |-  ( ph -> ( RR _D ( x e. RR |-> ( G ` x ) ) ) = ( RR _D G ) ) | 
						
							| 125 |  | nfcv |  |-  F/_ x F | 
						
							| 126 |  | elfznn0 |  |-  ( i e. ( 0 ... ( R + 1 ) ) -> i e. NN0 ) | 
						
							| 127 | 126 37 | sylan2 |  |-  ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) | 
						
							| 128 | 125 50 127 12 | etransclem2 |  |-  ( ph -> ( RR _D G ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) | 
						
							| 129 | 124 128 | eqtrd |  |-  ( ph -> ( RR _D ( x e. RR |-> ( G ` x ) ) ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) | 
						
							| 130 | 6 24 64 100 45 120 129 | dvmptmul |  |-  ( ph -> ( RR _D ( x e. RR |-> ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. RR |-> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) ) ) ) | 
						
							| 131 | 120 24 | mulcomd |  |-  ( ( ph /\ x e. RR ) -> ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) = ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) | 
						
							| 132 | 131 | oveq2d |  |-  ( ( ph /\ x e. RR ) -> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) ) = ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) ) | 
						
							| 133 | 24 | negcld |  |-  ( ( ph /\ x e. RR ) -> -u ( _e ^c -u x ) e. CC ) | 
						
							| 134 | 133 45 | mulcld |  |-  ( ( ph /\ x e. RR ) -> ( -u ( _e ^c -u x ) x. ( G ` x ) ) e. CC ) | 
						
							| 135 | 24 120 | mulcld |  |-  ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) e. CC ) | 
						
							| 136 | 134 135 | addcomd |  |-  ( ( ph /\ x e. RR ) -> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) = ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + ( -u ( _e ^c -u x ) x. ( G ` x ) ) ) ) | 
						
							| 137 | 135 46 | negsubd |  |-  ( ( ph /\ x e. RR ) -> ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) = ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) - ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) | 
						
							| 138 | 24 45 | mulneg1d |  |-  ( ( ph /\ x e. RR ) -> ( -u ( _e ^c -u x ) x. ( G ` x ) ) = -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) | 
						
							| 139 | 138 | oveq2d |  |-  ( ( ph /\ x e. RR ) -> ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + ( -u ( _e ^c -u x ) x. ( G ` x ) ) ) = ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) | 
						
							| 140 | 24 120 45 | subdid |  |-  ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) ) = ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) - ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) | 
						
							| 141 | 137 139 140 | 3eqtr4d |  |-  ( ( ph /\ x e. RR ) -> ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + ( -u ( _e ^c -u x ) x. ( G ` x ) ) ) = ( ( _e ^c -u x ) x. ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) ) ) | 
						
							| 142 | 44 | oveq2d |  |-  ( ( ph /\ x e. RR ) -> ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) = ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) ) | 
						
							| 143 | 26 119 41 | fsumsub |  |-  ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` i ) ` x ) ) = ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) ) | 
						
							| 144 |  | fveq2 |  |-  ( j = i -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` i ) ) | 
						
							| 145 | 144 | fveq1d |  |-  ( j = i -> ( ( ( RR Dn F ) ` j ) ` x ) = ( ( ( RR Dn F ) ` i ) ` x ) ) | 
						
							| 146 | 107 | fveq1d |  |-  ( j = ( i + 1 ) -> ( ( ( RR Dn F ) ` j ) ` x ) = ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) | 
						
							| 147 |  | fveq2 |  |-  ( j = 0 -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` 0 ) ) | 
						
							| 148 | 147 | fveq1d |  |-  ( j = 0 -> ( ( ( RR Dn F ) ` j ) ` x ) = ( ( ( RR Dn F ) ` 0 ) ` x ) ) | 
						
							| 149 |  | fveq2 |  |-  ( j = ( R + 1 ) -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` ( R + 1 ) ) ) | 
						
							| 150 | 149 | fveq1d |  |-  ( j = ( R + 1 ) -> ( ( ( RR Dn F ) ` j ) ` x ) = ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) ) | 
						
							| 151 | 8 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 152 | 34 151 | nn0mulcld |  |-  ( ph -> ( M x. P ) e. NN0 ) | 
						
							| 153 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 154 | 8 153 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 155 | 152 154 | nn0addcld |  |-  ( ph -> ( ( M x. P ) + ( P - 1 ) ) e. NN0 ) | 
						
							| 156 | 11 155 | eqeltrid |  |-  ( ph -> R e. NN0 ) | 
						
							| 157 | 156 | adantr |  |-  ( ( ph /\ x e. RR ) -> R e. NN0 ) | 
						
							| 158 | 157 | nn0zd |  |-  ( ( ph /\ x e. RR ) -> R e. ZZ ) | 
						
							| 159 |  | peano2nn0 |  |-  ( R e. NN0 -> ( R + 1 ) e. NN0 ) | 
						
							| 160 | 156 159 | syl |  |-  ( ph -> ( R + 1 ) e. NN0 ) | 
						
							| 161 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 162 | 160 161 | eleqtrdi |  |-  ( ph -> ( R + 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 163 | 162 | adantr |  |-  ( ( ph /\ x e. RR ) -> ( R + 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 164 |  | elfznn0 |  |-  ( j e. ( 0 ... ( R + 1 ) ) -> j e. NN0 ) | 
						
							| 165 | 164 115 | sylan2 |  |-  ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) | 
						
							| 166 | 165 | adantlr |  |-  ( ( ( ph /\ x e. RR ) /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) | 
						
							| 167 |  | simplr |  |-  ( ( ( ph /\ x e. RR ) /\ j e. ( 0 ... ( R + 1 ) ) ) -> x e. RR ) | 
						
							| 168 | 166 167 | ffvelcdmd |  |-  ( ( ( ph /\ x e. RR ) /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( ( RR Dn F ) ` j ) ` x ) e. CC ) | 
						
							| 169 | 145 146 148 150 158 163 168 | telfsum2 |  |-  ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` i ) ` x ) ) = ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) ) | 
						
							| 170 | 142 143 169 | 3eqtr2d |  |-  ( ( ph /\ x e. RR ) -> ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) = ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) ) | 
						
							| 171 | 170 | oveq2d |  |-  ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) - ( G ` x ) ) ) = ( ( _e ^c -u x ) x. ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) ) ) | 
						
							| 172 | 156 | nn0red |  |-  ( ph -> R e. RR ) | 
						
							| 173 | 172 | ltp1d |  |-  ( ph -> R < ( R + 1 ) ) | 
						
							| 174 | 11 173 | eqbrtrrid |  |-  ( ph -> ( ( M x. P ) + ( P - 1 ) ) < ( R + 1 ) ) | 
						
							| 175 |  | etransclem5 |  |-  ( k e. ( 0 ... M ) |-> ( y e. RR |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. RR |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 176 | 6 7 8 34 9 160 174 175 | etransclem32 |  |-  ( ph -> ( ( RR Dn F ) ` ( R + 1 ) ) = ( x e. RR |-> 0 ) ) | 
						
							| 177 | 176 | fveq1d |  |-  ( ph -> ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) = ( ( x e. RR |-> 0 ) ` x ) ) | 
						
							| 178 |  | eqid |  |-  ( x e. RR |-> 0 ) = ( x e. RR |-> 0 ) | 
						
							| 179 | 178 | fvmpt2 |  |-  ( ( x e. RR /\ 0 e. RR ) -> ( ( x e. RR |-> 0 ) ` x ) = 0 ) | 
						
							| 180 | 57 179 | mpan2 |  |-  ( x e. RR -> ( ( x e. RR |-> 0 ) ` x ) = 0 ) | 
						
							| 181 | 177 180 | sylan9eq |  |-  ( ( ph /\ x e. RR ) -> ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) = 0 ) | 
						
							| 182 |  | cnex |  |-  CC e. _V | 
						
							| 183 | 182 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 184 | 6 5 | ssexd |  |-  ( ph -> RR e. _V ) | 
						
							| 185 |  | elpm2r |  |-  ( ( ( CC e. _V /\ RR e. _V ) /\ ( F : RR --> CC /\ RR C_ RR ) ) -> F e. ( CC ^pm RR ) ) | 
						
							| 186 | 183 184 50 5 185 | syl22anc |  |-  ( ph -> F e. ( CC ^pm RR ) ) | 
						
							| 187 |  | dvn0 |  |-  ( ( RR C_ CC /\ F e. ( CC ^pm RR ) ) -> ( ( RR Dn F ) ` 0 ) = F ) | 
						
							| 188 | 49 186 187 | syl2anc |  |-  ( ph -> ( ( RR Dn F ) ` 0 ) = F ) | 
						
							| 189 | 188 | fveq1d |  |-  ( ph -> ( ( ( RR Dn F ) ` 0 ) ` x ) = ( F ` x ) ) | 
						
							| 190 | 189 | adantr |  |-  ( ( ph /\ x e. RR ) -> ( ( ( RR Dn F ) ` 0 ) ` x ) = ( F ` x ) ) | 
						
							| 191 | 181 190 | oveq12d |  |-  ( ( ph /\ x e. RR ) -> ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) = ( 0 - ( F ` x ) ) ) | 
						
							| 192 |  | df-neg |  |-  -u ( F ` x ) = ( 0 - ( F ` x ) ) | 
						
							| 193 | 191 192 | eqtr4di |  |-  ( ( ph /\ x e. RR ) -> ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) = -u ( F ` x ) ) | 
						
							| 194 | 193 | oveq2d |  |-  ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. ( ( ( ( RR Dn F ) ` ( R + 1 ) ) ` x ) - ( ( ( RR Dn F ) ` 0 ) ` x ) ) ) = ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) | 
						
							| 195 | 141 171 194 | 3eqtrd |  |-  ( ( ph /\ x e. RR ) -> ( ( ( _e ^c -u x ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) + ( -u ( _e ^c -u x ) x. ( G ` x ) ) ) = ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) | 
						
							| 196 | 132 136 195 | 3eqtrd |  |-  ( ( ph /\ x e. RR ) -> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) ) = ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) | 
						
							| 197 | 196 | mpteq2dva |  |-  ( ph -> ( x e. RR |-> ( ( -u ( _e ^c -u x ) x. ( G ` x ) ) + ( sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) x. ( _e ^c -u x ) ) ) ) = ( x e. RR |-> ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) ) | 
						
							| 198 | 24 51 | mulneg2d |  |-  ( ( ph /\ x e. RR ) -> ( ( _e ^c -u x ) x. -u ( F ` x ) ) = -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) | 
						
							| 199 | 198 | mpteq2dva |  |-  ( ph -> ( x e. RR |-> ( ( _e ^c -u x ) x. -u ( F ` x ) ) ) = ( x e. RR |-> -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) | 
						
							| 200 | 130 197 199 | 3eqtrd |  |-  ( ph -> ( RR _D ( x e. RR |-> ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. RR |-> -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) | 
						
							| 201 | 6 46 53 200 | dvmptneg |  |-  ( ph -> ( RR _D ( x e. RR |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. RR |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) | 
						
							| 202 | 201 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D ( x e. RR |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. RR |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) | 
						
							| 203 |  | 0red |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. RR ) | 
						
							| 204 |  | elfzelz |  |-  ( j e. ( 0 ... M ) -> j e. ZZ ) | 
						
							| 205 | 204 | zred |  |-  ( j e. ( 0 ... M ) -> j e. RR ) | 
						
							| 206 | 205 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> j e. RR ) | 
						
							| 207 | 203 206 | iccssred |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 [,] j ) C_ RR ) | 
						
							| 208 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 209 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 210 |  | 0red |  |-  ( j e. ( 0 ... M ) -> 0 e. RR ) | 
						
							| 211 |  | iccntr |  |-  ( ( 0 e. RR /\ j e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] j ) ) = ( 0 (,) j ) ) | 
						
							| 212 | 210 205 211 | syl2anc |  |-  ( j e. ( 0 ... M ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] j ) ) = ( 0 (,) j ) ) | 
						
							| 213 | 212 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] j ) ) = ( 0 (,) j ) ) | 
						
							| 214 | 17 48 55 202 207 208 209 213 | dvmptres2 |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) = ( x e. ( 0 (,) j ) |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) | 
						
							| 215 | 19 | a1i |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> _e e. CC ) | 
						
							| 216 |  | elioore |  |-  ( x e. ( 0 (,) j ) -> x e. RR ) | 
						
							| 217 | 216 | recnd |  |-  ( x e. ( 0 (,) j ) -> x e. CC ) | 
						
							| 218 | 217 | adantl |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> x e. CC ) | 
						
							| 219 | 218 | negcld |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> -u x e. CC ) | 
						
							| 220 | 215 219 | cxpcld |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) e. CC ) | 
						
							| 221 | 50 | adantr |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> F : RR --> CC ) | 
						
							| 222 | 216 | adantl |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> x e. RR ) | 
						
							| 223 | 221 222 | ffvelcdmd |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> ( F ` x ) e. CC ) | 
						
							| 224 | 220 223 | mulcld |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) | 
						
							| 225 | 224 | negnegd |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) = ( ( _e ^c -u x ) x. ( F ` x ) ) ) | 
						
							| 226 | 225 | mpteq2dva |  |-  ( ph -> ( x e. ( 0 (,) j ) |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) | 
						
							| 227 | 226 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> -u -u ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) | 
						
							| 228 | 16 214 227 | 3eqtrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D O ) = ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) | 
						
							| 229 | 228 | fveq1d |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( RR _D O ) ` x ) = ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) ) | 
						
							| 230 | 229 | adantr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( RR _D O ) ` x ) = ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) ) | 
						
							| 231 |  | simpr |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> x e. ( 0 (,) j ) ) | 
						
							| 232 |  | eqid |  |-  ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) | 
						
							| 233 | 232 | fvmpt2 |  |-  ( ( x e. ( 0 (,) j ) /\ ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) -> ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) = ( ( _e ^c -u x ) x. ( F ` x ) ) ) | 
						
							| 234 | 231 224 233 | syl2anc |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) = ( ( _e ^c -u x ) x. ( F ` x ) ) ) | 
						
							| 235 | 234 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) ` x ) = ( ( _e ^c -u x ) x. ( F ` x ) ) ) | 
						
							| 236 | 230 235 | eqtr2d |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) = ( ( RR _D O ) ` x ) ) | 
						
							| 237 | 236 | itgeq2dv |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x = S. ( 0 (,) j ) ( ( RR _D O ) ` x ) _d x ) | 
						
							| 238 |  | elfzle1 |  |-  ( j e. ( 0 ... M ) -> 0 <_ j ) | 
						
							| 239 | 238 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> 0 <_ j ) | 
						
							| 240 |  | eqid |  |-  ( x e. ( 0 [,] j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( x e. ( 0 [,] j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) | 
						
							| 241 |  | eqidd |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> ( y e. CC |-> ( _e ^c y ) ) = ( y e. CC |-> ( _e ^c y ) ) ) | 
						
							| 242 | 90 | adantl |  |-  ( ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) /\ y = -u x ) -> ( _e ^c y ) = ( _e ^c -u x ) ) | 
						
							| 243 | 210 205 | iccssred |  |-  ( j e. ( 0 ... M ) -> ( 0 [,] j ) C_ RR ) | 
						
							| 244 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 245 | 243 244 | sstrdi |  |-  ( j e. ( 0 ... M ) -> ( 0 [,] j ) C_ CC ) | 
						
							| 246 | 245 | sselda |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> x e. CC ) | 
						
							| 247 | 246 | negcld |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> -u x e. CC ) | 
						
							| 248 | 19 | a1i |  |-  ( x e. CC -> _e e. CC ) | 
						
							| 249 |  | negcl |  |-  ( x e. CC -> -u x e. CC ) | 
						
							| 250 | 248 249 | cxpcld |  |-  ( x e. CC -> ( _e ^c -u x ) e. CC ) | 
						
							| 251 | 246 250 | syl |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> ( _e ^c -u x ) e. CC ) | 
						
							| 252 | 241 242 247 251 | fvmptd |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) = ( _e ^c -u x ) ) | 
						
							| 253 | 252 | eqcomd |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> ( _e ^c -u x ) = ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) | 
						
							| 254 | 253 | adantll |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> ( _e ^c -u x ) = ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) | 
						
							| 255 | 254 | mpteq2dva |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( _e ^c -u x ) ) = ( x e. ( 0 [,] j ) |-> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) ) | 
						
							| 256 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 257 | 256 | a1i |  |-  ( _e e. RR+ -> -oo e. RR* ) | 
						
							| 258 |  | 0red |  |-  ( _e e. RR+ -> 0 e. RR ) | 
						
							| 259 |  | rpxr |  |-  ( _e e. RR+ -> _e e. RR* ) | 
						
							| 260 |  | rpgt0 |  |-  ( _e e. RR+ -> 0 < _e ) | 
						
							| 261 | 257 258 259 260 | gtnelioc |  |-  ( _e e. RR+ -> -. _e e. ( -oo (,] 0 ) ) | 
						
							| 262 | 80 261 | ax-mp |  |-  -. _e e. ( -oo (,] 0 ) | 
						
							| 263 |  | eldif |  |-  ( _e e. ( CC \ ( -oo (,] 0 ) ) <-> ( _e e. CC /\ -. _e e. ( -oo (,] 0 ) ) ) | 
						
							| 264 | 19 262 263 | mpbir2an |  |-  _e e. ( CC \ ( -oo (,] 0 ) ) | 
						
							| 265 |  | cxpcncf2 |  |-  ( _e e. ( CC \ ( -oo (,] 0 ) ) -> ( y e. CC |-> ( _e ^c y ) ) e. ( CC -cn-> CC ) ) | 
						
							| 266 | 264 265 | mp1i |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( y e. CC |-> ( _e ^c y ) ) e. ( CC -cn-> CC ) ) | 
						
							| 267 |  | eqid |  |-  ( x e. ( 0 [,] j ) |-> -u x ) = ( x e. ( 0 [,] j ) |-> -u x ) | 
						
							| 268 | 267 | negcncf |  |-  ( ( 0 [,] j ) C_ CC -> ( x e. ( 0 [,] j ) |-> -u x ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 269 | 245 268 | syl |  |-  ( j e. ( 0 ... M ) -> ( x e. ( 0 [,] j ) |-> -u x ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 270 | 269 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> -u x ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 271 | 266 270 | cncfmpt1f |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 272 | 255 271 | eqeltrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( _e ^c -u x ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 273 | 244 | a1i |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> RR C_ CC ) | 
						
							| 274 | 8 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> P e. NN ) | 
						
							| 275 | 34 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> M e. NN0 ) | 
						
							| 276 |  | etransclem6 |  |-  ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) | 
						
							| 277 | 9 276 | eqtri |  |-  F = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) | 
						
							| 278 | 243 | sselda |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 [,] j ) ) -> x e. RR ) | 
						
							| 279 | 278 | adantll |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> x e. RR ) | 
						
							| 280 | 273 274 275 277 279 | etransclem13 |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> ( F ` x ) = prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 281 | 280 | mpteq2dva |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( F ` x ) ) = ( x e. ( 0 [,] j ) |-> prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 282 | 245 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 [,] j ) C_ CC ) | 
						
							| 283 |  | fzfid |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 ... M ) e. Fin ) | 
						
							| 284 | 279 | recnd |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> x e. CC ) | 
						
							| 285 | 284 | 3adant3 |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> x e. CC ) | 
						
							| 286 |  | elfzelz |  |-  ( k e. ( 0 ... M ) -> k e. ZZ ) | 
						
							| 287 | 286 | zcnd |  |-  ( k e. ( 0 ... M ) -> k e. CC ) | 
						
							| 288 | 287 | 3ad2ant3 |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> k e. CC ) | 
						
							| 289 | 285 288 | subcld |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> ( x - k ) e. CC ) | 
						
							| 290 | 8 | adantr |  |-  ( ( ph /\ x e. ( 0 [,] j ) ) -> P e. NN ) | 
						
							| 291 | 290 153 | syl |  |-  ( ( ph /\ x e. ( 0 [,] j ) ) -> ( P - 1 ) e. NN0 ) | 
						
							| 292 | 151 | adantr |  |-  ( ( ph /\ x e. ( 0 [,] j ) ) -> P e. NN0 ) | 
						
							| 293 | 291 292 | ifcld |  |-  ( ( ph /\ x e. ( 0 [,] j ) ) -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 294 | 293 | 3adant3 |  |-  ( ( ph /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 295 | 294 | 3adant1r |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 296 | 289 295 | expcld |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) /\ k e. ( 0 ... M ) ) -> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) e. CC ) | 
						
							| 297 |  | nfv |  |-  F/ x ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) | 
						
							| 298 | 245 | adantr |  |-  ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> ( 0 [,] j ) C_ CC ) | 
						
							| 299 |  | ssid |  |-  CC C_ CC | 
						
							| 300 | 299 | a1i |  |-  ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> CC C_ CC ) | 
						
							| 301 | 298 300 | idcncfg |  |-  ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> x ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 302 | 287 | adantl |  |-  ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> k e. CC ) | 
						
							| 303 | 298 302 300 | constcncfg |  |-  ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> k ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 304 | 301 303 | subcncf |  |-  ( ( j e. ( 0 ... M ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( x - k ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 305 | 304 | adantll |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( x - k ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 306 | 154 151 | ifcld |  |-  ( ph -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 307 |  | expcncf |  |-  ( if ( k = 0 , ( P - 1 ) , P ) e. NN0 -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 308 | 306 307 | syl |  |-  ( ph -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 309 | 308 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 310 | 299 | a1i |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) -> CC C_ CC ) | 
						
							| 311 |  | oveq1 |  |-  ( y = ( x - k ) -> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) = ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 312 | 297 305 309 310 311 | cncfcompt2 |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ k e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 313 | 282 283 296 312 | fprodcncf |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 314 | 281 313 | eqeltrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( F ` x ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 315 | 272 314 | mulcncf |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 316 |  | ioossicc |  |-  ( 0 (,) j ) C_ ( 0 [,] j ) | 
						
							| 317 | 316 | a1i |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 (,) j ) C_ ( 0 [,] j ) ) | 
						
							| 318 | 299 | a1i |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> CC C_ CC ) | 
						
							| 319 | 224 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) | 
						
							| 320 | 240 315 317 318 319 | cncfmptssg |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. ( ( 0 (,) j ) -cn-> CC ) ) | 
						
							| 321 | 228 320 | eqeltrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D O ) e. ( ( 0 (,) j ) -cn-> CC ) ) | 
						
							| 322 | 7 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 323 | 8 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> P e. NN ) | 
						
							| 324 | 34 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> M e. NN0 ) | 
						
							| 325 |  | oveq2 |  |-  ( j = k -> ( x - j ) = ( x - k ) ) | 
						
							| 326 | 325 | oveq1d |  |-  ( j = k -> ( ( x - j ) ^ P ) = ( ( x - k ) ^ P ) ) | 
						
							| 327 | 326 | cbvprodv |  |-  prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) = prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) | 
						
							| 328 | 327 | oveq2i |  |-  ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) = ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) | 
						
							| 329 | 328 | mpteq2i |  |-  ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) | 
						
							| 330 | 9 329 | eqtri |  |-  F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) | 
						
							| 331 | 17 322 323 324 330 203 206 | etransclem18 |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. L^1 ) | 
						
							| 332 | 228 331 | eqeltrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( RR _D O ) e. L^1 ) | 
						
							| 333 |  | eqid |  |-  ( x e. RR |-> ( G ` x ) ) = ( x e. RR |-> ( G ` x ) ) | 
						
							| 334 | 6 7 8 34 9 12 | etransclem43 |  |-  ( ph -> G e. ( RR -cn-> CC ) ) | 
						
							| 335 | 123 334 | eqeltrd |  |-  ( ph -> ( x e. RR |-> ( G ` x ) ) e. ( RR -cn-> CC ) ) | 
						
							| 336 | 335 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. RR |-> ( G ` x ) ) e. ( RR -cn-> CC ) ) | 
						
							| 337 | 121 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> G : RR --> CC ) | 
						
							| 338 | 337 279 | ffvelcdmd |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 [,] j ) ) -> ( G ` x ) e. CC ) | 
						
							| 339 | 333 336 207 318 338 | cncfmptssg |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( G ` x ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 340 | 272 339 | mulcncf |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> ( ( _e ^c -u x ) x. ( G ` x ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 341 | 340 | negcncfg |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 342 | 13 341 | eqeltrid |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> O e. ( ( 0 [,] j ) -cn-> CC ) ) | 
						
							| 343 | 203 206 239 321 332 342 | ftc2 |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( RR _D O ) ` x ) _d x = ( ( O ` j ) - ( O ` 0 ) ) ) | 
						
							| 344 |  | negeq |  |-  ( x = j -> -u x = -u j ) | 
						
							| 345 | 344 | oveq2d |  |-  ( x = j -> ( _e ^c -u x ) = ( _e ^c -u j ) ) | 
						
							| 346 |  | fveq2 |  |-  ( x = j -> ( G ` x ) = ( G ` j ) ) | 
						
							| 347 | 345 346 | oveq12d |  |-  ( x = j -> ( ( _e ^c -u x ) x. ( G ` x ) ) = ( ( _e ^c -u j ) x. ( G ` j ) ) ) | 
						
							| 348 | 347 | negeqd |  |-  ( x = j -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) = -u ( ( _e ^c -u j ) x. ( G ` j ) ) ) | 
						
							| 349 | 203 | rexrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. RR* ) | 
						
							| 350 | 206 | rexrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> j e. RR* ) | 
						
							| 351 |  | ubicc2 |  |-  ( ( 0 e. RR* /\ j e. RR* /\ 0 <_ j ) -> j e. ( 0 [,] j ) ) | 
						
							| 352 | 349 350 239 351 | syl3anc |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> j e. ( 0 [,] j ) ) | 
						
							| 353 | 19 | a1i |  |-  ( j e. ( 0 ... M ) -> _e e. CC ) | 
						
							| 354 | 205 | recnd |  |-  ( j e. ( 0 ... M ) -> j e. CC ) | 
						
							| 355 | 354 | negcld |  |-  ( j e. ( 0 ... M ) -> -u j e. CC ) | 
						
							| 356 | 353 355 | cxpcld |  |-  ( j e. ( 0 ... M ) -> ( _e ^c -u j ) e. CC ) | 
						
							| 357 | 356 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( _e ^c -u j ) e. CC ) | 
						
							| 358 | 121 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> G : RR --> CC ) | 
						
							| 359 | 358 206 | ffvelcdmd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( G ` j ) e. CC ) | 
						
							| 360 | 357 359 | mulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( _e ^c -u j ) x. ( G ` j ) ) e. CC ) | 
						
							| 361 | 360 | negcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> -u ( ( _e ^c -u j ) x. ( G ` j ) ) e. CC ) | 
						
							| 362 | 13 348 352 361 | fvmptd3 |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( O ` j ) = -u ( ( _e ^c -u j ) x. ( G ` j ) ) ) | 
						
							| 363 | 13 | a1i |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> O = ( x e. ( 0 [,] j ) |-> -u ( ( _e ^c -u x ) x. ( G ` x ) ) ) ) | 
						
							| 364 |  | negeq |  |-  ( x = 0 -> -u x = -u 0 ) | 
						
							| 365 | 364 | oveq2d |  |-  ( x = 0 -> ( _e ^c -u x ) = ( _e ^c -u 0 ) ) | 
						
							| 366 |  | neg0 |  |-  -u 0 = 0 | 
						
							| 367 | 366 | oveq2i |  |-  ( _e ^c -u 0 ) = ( _e ^c 0 ) | 
						
							| 368 |  | cxp0 |  |-  ( _e e. CC -> ( _e ^c 0 ) = 1 ) | 
						
							| 369 | 19 368 | ax-mp |  |-  ( _e ^c 0 ) = 1 | 
						
							| 370 | 367 369 | eqtri |  |-  ( _e ^c -u 0 ) = 1 | 
						
							| 371 | 365 370 | eqtrdi |  |-  ( x = 0 -> ( _e ^c -u x ) = 1 ) | 
						
							| 372 |  | fveq2 |  |-  ( x = 0 -> ( G ` x ) = ( G ` 0 ) ) | 
						
							| 373 | 371 372 | oveq12d |  |-  ( x = 0 -> ( ( _e ^c -u x ) x. ( G ` x ) ) = ( 1 x. ( G ` 0 ) ) ) | 
						
							| 374 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 375 | 121 374 | ffvelcdmd |  |-  ( ph -> ( G ` 0 ) e. CC ) | 
						
							| 376 | 375 | mullidd |  |-  ( ph -> ( 1 x. ( G ` 0 ) ) = ( G ` 0 ) ) | 
						
							| 377 | 373 376 | sylan9eqr |  |-  ( ( ph /\ x = 0 ) -> ( ( _e ^c -u x ) x. ( G ` x ) ) = ( G ` 0 ) ) | 
						
							| 378 | 377 | negeqd |  |-  ( ( ph /\ x = 0 ) -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) = -u ( G ` 0 ) ) | 
						
							| 379 | 378 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x = 0 ) -> -u ( ( _e ^c -u x ) x. ( G ` x ) ) = -u ( G ` 0 ) ) | 
						
							| 380 |  | lbicc2 |  |-  ( ( 0 e. RR* /\ j e. RR* /\ 0 <_ j ) -> 0 e. ( 0 [,] j ) ) | 
						
							| 381 | 349 350 239 380 | syl3anc |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. ( 0 [,] j ) ) | 
						
							| 382 | 375 | negcld |  |-  ( ph -> -u ( G ` 0 ) e. CC ) | 
						
							| 383 | 382 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> -u ( G ` 0 ) e. CC ) | 
						
							| 384 | 363 379 381 383 | fvmptd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( O ` 0 ) = -u ( G ` 0 ) ) | 
						
							| 385 | 362 384 | oveq12d |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( O ` j ) - ( O ` 0 ) ) = ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) - -u ( G ` 0 ) ) ) | 
						
							| 386 | 375 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( G ` 0 ) e. CC ) | 
						
							| 387 | 361 386 | subnegd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) - -u ( G ` 0 ) ) = ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) + ( G ` 0 ) ) ) | 
						
							| 388 | 361 386 | addcomd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) + ( G ` 0 ) ) = ( ( G ` 0 ) + -u ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) | 
						
							| 389 | 386 360 | negsubd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( G ` 0 ) + -u ( ( _e ^c -u j ) x. ( G ` j ) ) ) = ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) | 
						
							| 390 | 388 389 | eqtrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( -u ( ( _e ^c -u j ) x. ( G ` j ) ) + ( G ` 0 ) ) = ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) | 
						
							| 391 | 385 387 390 | 3eqtrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( O ` j ) - ( O ` 0 ) ) = ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) | 
						
							| 392 | 237 343 391 | 3eqtrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x = ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) | 
						
							| 393 | 392 | oveq2d |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) = ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) | 
						
							| 394 | 31 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> Q e. ( Poly ` ZZ ) ) | 
						
							| 395 |  | 0zd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. ZZ ) | 
						
							| 396 | 3 | coef2 |  |-  ( ( Q e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> A : NN0 --> ZZ ) | 
						
							| 397 | 394 395 396 | syl2anc |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> A : NN0 --> ZZ ) | 
						
							| 398 |  | elfznn0 |  |-  ( j e. ( 0 ... M ) -> j e. NN0 ) | 
						
							| 399 | 398 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> j e. NN0 ) | 
						
							| 400 | 397 399 | ffvelcdmd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. ZZ ) | 
						
							| 401 | 400 | zcnd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. CC ) | 
						
							| 402 | 353 354 | cxpcld |  |-  ( j e. ( 0 ... M ) -> ( _e ^c j ) e. CC ) | 
						
							| 403 | 402 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( _e ^c j ) e. CC ) | 
						
							| 404 | 401 403 | mulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( _e ^c j ) ) e. CC ) | 
						
							| 405 | 404 386 360 | subdid |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( G ` 0 ) - ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) = ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) | 
						
							| 406 | 393 405 | eqtrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) = ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) | 
						
							| 407 | 406 | sumeq2dv |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) = sum_ j e. ( 0 ... M ) ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) | 
						
							| 408 |  | fzfid |  |-  ( ph -> ( 0 ... M ) e. Fin ) | 
						
							| 409 | 404 386 | mulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) e. CC ) | 
						
							| 410 | 404 360 | mulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) e. CC ) | 
						
							| 411 | 408 409 410 | fsumsub |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) ) | 
						
							| 412 | 2 | eqcomd |  |-  ( ph -> 0 = ( Q ` _e ) ) | 
						
							| 413 | 3 4 | coeid2 |  |-  ( ( Q e. ( Poly ` ZZ ) /\ _e e. CC ) -> ( Q ` _e ) = sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^ j ) ) ) | 
						
							| 414 | 31 19 413 | sylancl |  |-  ( ph -> ( Q ` _e ) = sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^ j ) ) ) | 
						
							| 415 |  | cxpexp |  |-  ( ( _e e. CC /\ j e. NN0 ) -> ( _e ^c j ) = ( _e ^ j ) ) | 
						
							| 416 | 353 398 415 | syl2anc |  |-  ( j e. ( 0 ... M ) -> ( _e ^c j ) = ( _e ^ j ) ) | 
						
							| 417 | 416 | eqcomd |  |-  ( j e. ( 0 ... M ) -> ( _e ^ j ) = ( _e ^c j ) ) | 
						
							| 418 | 417 | oveq2d |  |-  ( j e. ( 0 ... M ) -> ( ( A ` j ) x. ( _e ^ j ) ) = ( ( A ` j ) x. ( _e ^c j ) ) ) | 
						
							| 419 | 418 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( _e ^ j ) ) = ( ( A ` j ) x. ( _e ^c j ) ) ) | 
						
							| 420 | 419 | sumeq2dv |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^ j ) ) = sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^c j ) ) ) | 
						
							| 421 | 412 414 420 | 3eqtrd |  |-  ( ph -> 0 = sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^c j ) ) ) | 
						
							| 422 | 421 | oveq1d |  |-  ( ph -> ( 0 x. ( G ` 0 ) ) = ( sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) ) | 
						
							| 423 | 375 | mul02d |  |-  ( ph -> ( 0 x. ( G ` 0 ) ) = 0 ) | 
						
							| 424 | 408 375 404 | fsummulc1 |  |-  ( ph -> ( sum_ j e. ( 0 ... M ) ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) ) | 
						
							| 425 | 422 423 424 | 3eqtr3rd |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) = 0 ) | 
						
							| 426 |  | fveq2 |  |-  ( x = j -> ( ( ( RR Dn F ) ` i ) ` x ) = ( ( ( RR Dn F ) ` i ) ` j ) ) | 
						
							| 427 | 426 | sumeq2sdv |  |-  ( x = j -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) | 
						
							| 428 |  | fzfid |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 ... R ) e. Fin ) | 
						
							| 429 | 38 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) | 
						
							| 430 | 206 | adantr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ i e. ( 0 ... R ) ) -> j e. RR ) | 
						
							| 431 | 429 430 | ffvelcdmd |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ i e. ( 0 ... R ) ) -> ( ( ( RR Dn F ) ` i ) ` j ) e. CC ) | 
						
							| 432 | 428 431 | fsumcl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) e. CC ) | 
						
							| 433 | 12 427 206 432 | fvmptd3 |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( G ` j ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) | 
						
							| 434 | 433 | oveq2d |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( _e ^c -u j ) x. ( G ` j ) ) = ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) | 
						
							| 435 | 434 | oveq2d |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) = ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) | 
						
							| 436 | 357 432 | mulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) e. CC ) | 
						
							| 437 | 401 403 436 | mulassd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) = ( ( A ` j ) x. ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) ) | 
						
							| 438 | 369 | eqcomi |  |-  1 = ( _e ^c 0 ) | 
						
							| 439 | 438 | a1i |  |-  ( j e. ( 0 ... M ) -> 1 = ( _e ^c 0 ) ) | 
						
							| 440 | 354 | negidd |  |-  ( j e. ( 0 ... M ) -> ( j + -u j ) = 0 ) | 
						
							| 441 | 440 | eqcomd |  |-  ( j e. ( 0 ... M ) -> 0 = ( j + -u j ) ) | 
						
							| 442 | 441 | oveq2d |  |-  ( j e. ( 0 ... M ) -> ( _e ^c 0 ) = ( _e ^c ( j + -u j ) ) ) | 
						
							| 443 | 57 58 | gtneii |  |-  _e =/= 0 | 
						
							| 444 | 443 | a1i |  |-  ( j e. ( 0 ... M ) -> _e =/= 0 ) | 
						
							| 445 | 353 444 354 355 | cxpaddd |  |-  ( j e. ( 0 ... M ) -> ( _e ^c ( j + -u j ) ) = ( ( _e ^c j ) x. ( _e ^c -u j ) ) ) | 
						
							| 446 | 439 442 445 | 3eqtrd |  |-  ( j e. ( 0 ... M ) -> 1 = ( ( _e ^c j ) x. ( _e ^c -u j ) ) ) | 
						
							| 447 | 446 | oveq1d |  |-  ( j e. ( 0 ... M ) -> ( 1 x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = ( ( ( _e ^c j ) x. ( _e ^c -u j ) ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) | 
						
							| 448 | 447 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( 1 x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = ( ( ( _e ^c j ) x. ( _e ^c -u j ) ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) | 
						
							| 449 | 432 | mullidd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( 1 x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) | 
						
							| 450 | 403 357 432 | mulassd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( _e ^c j ) x. ( _e ^c -u j ) ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) | 
						
							| 451 | 448 449 450 | 3eqtr3rd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) = sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) | 
						
							| 452 | 451 | oveq2d |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) = ( ( A ` j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) | 
						
							| 453 | 428 401 431 | fsummulc2 |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) = sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) | 
						
							| 454 | 452 453 | eqtrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( ( _e ^c j ) x. ( ( _e ^c -u j ) x. sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` j ) ) ) ) = sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) | 
						
							| 455 | 435 437 454 | 3eqtrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) = sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) | 
						
							| 456 | 455 | sumeq2dv |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) = sum_ j e. ( 0 ... M ) sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) | 
						
							| 457 |  | vex |  |-  j e. _V | 
						
							| 458 |  | vex |  |-  i e. _V | 
						
							| 459 | 457 458 | op1std |  |-  ( k = <. j , i >. -> ( 1st ` k ) = j ) | 
						
							| 460 | 459 | fveq2d |  |-  ( k = <. j , i >. -> ( A ` ( 1st ` k ) ) = ( A ` j ) ) | 
						
							| 461 | 457 458 | op2ndd |  |-  ( k = <. j , i >. -> ( 2nd ` k ) = i ) | 
						
							| 462 | 461 | fveq2d |  |-  ( k = <. j , i >. -> ( ( RR Dn F ) ` ( 2nd ` k ) ) = ( ( RR Dn F ) ` i ) ) | 
						
							| 463 | 462 459 | fveq12d |  |-  ( k = <. j , i >. -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) = ( ( ( RR Dn F ) ` i ) ` j ) ) | 
						
							| 464 | 460 463 | oveq12d |  |-  ( k = <. j , i >. -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) = ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) ) | 
						
							| 465 |  | fzfid |  |-  ( ph -> ( 0 ... R ) e. Fin ) | 
						
							| 466 | 401 | adantrr |  |-  ( ( ph /\ ( j e. ( 0 ... M ) /\ i e. ( 0 ... R ) ) ) -> ( A ` j ) e. CC ) | 
						
							| 467 | 431 | anasss |  |-  ( ( ph /\ ( j e. ( 0 ... M ) /\ i e. ( 0 ... R ) ) ) -> ( ( ( RR Dn F ) ` i ) ` j ) e. CC ) | 
						
							| 468 | 466 467 | mulcld |  |-  ( ( ph /\ ( j e. ( 0 ... M ) /\ i e. ( 0 ... R ) ) ) -> ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) e. CC ) | 
						
							| 469 | 464 408 465 468 | fsumxp |  |-  ( ph -> sum_ j e. ( 0 ... M ) sum_ i e. ( 0 ... R ) ( ( A ` j ) x. ( ( ( RR Dn F ) ` i ) ` j ) ) = sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) | 
						
							| 470 | 456 469 | eqtrd |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) = sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) | 
						
							| 471 | 425 470 | oveq12d |  |-  ( ph -> ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) = ( 0 - sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) ) | 
						
							| 472 |  | df-neg |  |-  -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) = ( 0 - sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) | 
						
							| 473 | 472 | eqcomi |  |-  ( 0 - sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) = -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) | 
						
							| 474 | 473 | a1i |  |-  ( ph -> ( 0 - sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) = -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) | 
						
							| 475 | 411 471 474 | 3eqtrd |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( G ` 0 ) ) - ( ( ( A ` j ) x. ( _e ^c j ) ) x. ( ( _e ^c -u j ) x. ( G ` j ) ) ) ) = -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) | 
						
							| 476 | 14 407 475 | 3eqtrd |  |-  ( ph -> L = -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) | 
						
							| 477 | 476 | oveq1d |  |-  ( ph -> ( L / ( ! ` ( P - 1 ) ) ) = ( -u sum_ k e. ( ( 0 ... M ) X. ( 0 ... R ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |