Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem48.q |
|- ( ph -> Q e. ( ( Poly ` ZZ ) \ { 0p } ) ) |
2 |
|
etransclem48.qe0 |
|- ( ph -> ( Q ` _e ) = 0 ) |
3 |
|
etransclem48.a |
|- A = ( coeff ` Q ) |
4 |
|
etransclem48.a0 |
|- ( ph -> ( A ` 0 ) =/= 0 ) |
5 |
|
etransclem48.m |
|- M = ( deg ` Q ) |
6 |
|
etransclem48.c |
|- C = sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) |
7 |
|
etransclem48.s |
|- S = ( n e. NN0 |-> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) |
8 |
|
etransclem48.i |
|- I = inf ( { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } , RR , < ) |
9 |
|
etransclem48.t |
|- T = sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) |
10 |
1
|
eldifad |
|- ( ph -> Q e. ( Poly ` ZZ ) ) |
11 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
12 |
3
|
coef2 |
|- ( ( Q e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> A : NN0 --> ZZ ) |
13 |
10 11 12
|
syl2anc |
|- ( ph -> A : NN0 --> ZZ ) |
14 |
|
0nn0 |
|- 0 e. NN0 |
15 |
14
|
a1i |
|- ( ph -> 0 e. NN0 ) |
16 |
13 15
|
ffvelrnd |
|- ( ph -> ( A ` 0 ) e. ZZ ) |
17 |
|
zabscl |
|- ( ( A ` 0 ) e. ZZ -> ( abs ` ( A ` 0 ) ) e. ZZ ) |
18 |
16 17
|
syl |
|- ( ph -> ( abs ` ( A ` 0 ) ) e. ZZ ) |
19 |
|
dgrcl |
|- ( Q e. ( Poly ` ZZ ) -> ( deg ` Q ) e. NN0 ) |
20 |
10 19
|
syl |
|- ( ph -> ( deg ` Q ) e. NN0 ) |
21 |
5 20
|
eqeltrid |
|- ( ph -> M e. NN0 ) |
22 |
21
|
faccld |
|- ( ph -> ( ! ` M ) e. NN ) |
23 |
22
|
nnzd |
|- ( ph -> ( ! ` M ) e. ZZ ) |
24 |
|
ssrab2 |
|- { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } C_ NN0 |
25 |
|
nn0ssz |
|- NN0 C_ ZZ |
26 |
24 25
|
sstri |
|- { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } C_ ZZ |
27 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
28 |
24 27
|
sseqtri |
|- { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } C_ ( ZZ>= ` 0 ) |
29 |
|
1rp |
|- 1 e. RR+ |
30 |
|
nfv |
|- F/ n ph |
31 |
|
nfmpt1 |
|- F/_ n ( n e. NN0 |-> C ) |
32 |
|
nfmpt1 |
|- F/_ n ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) |
33 |
|
nfmpt1 |
|- F/_ n ( n e. NN0 |-> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) |
34 |
7 33
|
nfcxfr |
|- F/_ n S |
35 |
|
nn0ex |
|- NN0 e. _V |
36 |
35
|
mptex |
|- ( n e. NN0 |-> C ) e. _V |
37 |
36
|
a1i |
|- ( ph -> ( n e. NN0 |-> C ) e. _V ) |
38 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
39 |
13
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> A : NN0 --> ZZ ) |
40 |
|
elfznn0 |
|- ( j e. ( 0 ... M ) -> j e. NN0 ) |
41 |
40
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. NN0 ) |
42 |
39 41
|
ffvelrnd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. ZZ ) |
43 |
42
|
zcnd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. CC ) |
44 |
|
ere |
|- _e e. RR |
45 |
44
|
recni |
|- _e e. CC |
46 |
45
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> _e e. CC ) |
47 |
|
elfzelz |
|- ( j e. ( 0 ... M ) -> j e. ZZ ) |
48 |
47
|
zcnd |
|- ( j e. ( 0 ... M ) -> j e. CC ) |
49 |
48
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. CC ) |
50 |
46 49
|
cxpcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( _e ^c j ) e. CC ) |
51 |
43 50
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( _e ^c j ) ) e. CC ) |
52 |
51
|
abscld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) e. RR ) |
53 |
52
|
recnd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) e. CC ) |
54 |
21
|
nn0cnd |
|- ( ph -> M e. CC ) |
55 |
|
peano2nn0 |
|- ( M e. NN0 -> ( M + 1 ) e. NN0 ) |
56 |
21 55
|
syl |
|- ( ph -> ( M + 1 ) e. NN0 ) |
57 |
54 56
|
expcld |
|- ( ph -> ( M ^ ( M + 1 ) ) e. CC ) |
58 |
54 57
|
mulcld |
|- ( ph -> ( M x. ( M ^ ( M + 1 ) ) ) e. CC ) |
59 |
58
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( M x. ( M ^ ( M + 1 ) ) ) e. CC ) |
60 |
53 59
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. CC ) |
61 |
38 60
|
fsumcl |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. CC ) |
62 |
6 61
|
eqeltrid |
|- ( ph -> C e. CC ) |
63 |
|
eqidd |
|- ( ( ph /\ i e. NN0 ) -> ( n e. NN0 |-> C ) = ( n e. NN0 |-> C ) ) |
64 |
|
eqidd |
|- ( ( ( ph /\ i e. NN0 ) /\ n = i ) -> C = C ) |
65 |
|
simpr |
|- ( ( ph /\ i e. NN0 ) -> i e. NN0 ) |
66 |
62
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> C e. CC ) |
67 |
63 64 65 66
|
fvmptd |
|- ( ( ph /\ i e. NN0 ) -> ( ( n e. NN0 |-> C ) ` i ) = C ) |
68 |
27 11 37 62 67
|
climconst |
|- ( ph -> ( n e. NN0 |-> C ) ~~> C ) |
69 |
35
|
mptex |
|- ( n e. NN0 |-> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) e. _V |
70 |
7 69
|
eqeltri |
|- S e. _V |
71 |
70
|
a1i |
|- ( ph -> S e. _V ) |
72 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) |
73 |
72
|
expfac |
|- ( ( M ^ ( M + 1 ) ) e. CC -> ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ~~> 0 ) |
74 |
57 73
|
syl |
|- ( ph -> ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ~~> 0 ) |
75 |
|
simpr |
|- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
76 |
62
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> C e. CC ) |
77 |
|
eqid |
|- ( n e. NN0 |-> C ) = ( n e. NN0 |-> C ) |
78 |
77
|
fvmpt2 |
|- ( ( n e. NN0 /\ C e. CC ) -> ( ( n e. NN0 |-> C ) ` n ) = C ) |
79 |
75 76 78
|
syl2anc |
|- ( ( ph /\ n e. NN0 ) -> ( ( n e. NN0 |-> C ) ` n ) = C ) |
80 |
79 76
|
eqeltrd |
|- ( ( ph /\ n e. NN0 ) -> ( ( n e. NN0 |-> C ) ` n ) e. CC ) |
81 |
|
ovex |
|- ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) e. _V |
82 |
72
|
fvmpt2 |
|- ( ( n e. NN0 /\ ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) e. _V ) -> ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) = ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) |
83 |
81 82
|
mpan2 |
|- ( n e. NN0 -> ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) = ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) |
84 |
83
|
adantl |
|- ( ( ph /\ n e. NN0 ) -> ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) = ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) |
85 |
57
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> ( M ^ ( M + 1 ) ) e. CC ) |
86 |
85 75
|
expcld |
|- ( ( ph /\ n e. NN0 ) -> ( ( M ^ ( M + 1 ) ) ^ n ) e. CC ) |
87 |
75
|
faccld |
|- ( ( ph /\ n e. NN0 ) -> ( ! ` n ) e. NN ) |
88 |
87
|
nncnd |
|- ( ( ph /\ n e. NN0 ) -> ( ! ` n ) e. CC ) |
89 |
87
|
nnne0d |
|- ( ( ph /\ n e. NN0 ) -> ( ! ` n ) =/= 0 ) |
90 |
86 88 89
|
divcld |
|- ( ( ph /\ n e. NN0 ) -> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) e. CC ) |
91 |
84 90
|
eqeltrd |
|- ( ( ph /\ n e. NN0 ) -> ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) e. CC ) |
92 |
|
ovex |
|- ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) e. _V |
93 |
7
|
fvmpt2 |
|- ( ( n e. NN0 /\ ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) e. _V ) -> ( S ` n ) = ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) |
94 |
92 93
|
mpan2 |
|- ( n e. NN0 -> ( S ` n ) = ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) |
95 |
94
|
adantl |
|- ( ( ph /\ n e. NN0 ) -> ( S ` n ) = ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) |
96 |
79 84
|
oveq12d |
|- ( ( ph /\ n e. NN0 ) -> ( ( ( n e. NN0 |-> C ) ` n ) x. ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) ) = ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) |
97 |
95 96
|
eqtr4d |
|- ( ( ph /\ n e. NN0 ) -> ( S ` n ) = ( ( ( n e. NN0 |-> C ) ` n ) x. ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) ) ) |
98 |
30 31 32 34 27 11 68 71 74 80 91 97
|
climmulf |
|- ( ph -> S ~~> ( C x. 0 ) ) |
99 |
62
|
mul01d |
|- ( ph -> ( C x. 0 ) = 0 ) |
100 |
98 99
|
breqtrd |
|- ( ph -> S ~~> 0 ) |
101 |
|
eqidd |
|- ( ( ph /\ n e. NN0 ) -> ( S ` n ) = ( S ` n ) ) |
102 |
80 91
|
mulcld |
|- ( ( ph /\ n e. NN0 ) -> ( ( ( n e. NN0 |-> C ) ` n ) x. ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) ) e. CC ) |
103 |
97 102
|
eqeltrd |
|- ( ( ph /\ n e. NN0 ) -> ( S ` n ) e. CC ) |
104 |
34 27 11 71 101 103
|
clim0cf |
|- ( ph -> ( S ~~> 0 <-> A. e e. RR+ E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < e ) ) |
105 |
100 104
|
mpbid |
|- ( ph -> A. e e. RR+ E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < e ) |
106 |
|
breq2 |
|- ( e = 1 -> ( ( abs ` ( S ` n ) ) < e <-> ( abs ` ( S ` n ) ) < 1 ) ) |
107 |
106
|
rexralbidv |
|- ( e = 1 -> ( E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < e <-> E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 ) ) |
108 |
107
|
rspcva |
|- ( ( 1 e. RR+ /\ A. e e. RR+ E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < e ) -> E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 ) |
109 |
29 105 108
|
sylancr |
|- ( ph -> E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 ) |
110 |
|
rabn0 |
|- ( { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } =/= (/) <-> E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 ) |
111 |
109 110
|
sylibr |
|- ( ph -> { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } =/= (/) ) |
112 |
|
infssuzcl |
|- ( ( { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } C_ ( ZZ>= ` 0 ) /\ { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } =/= (/) ) -> inf ( { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } , RR , < ) e. { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } ) |
113 |
28 111 112
|
sylancr |
|- ( ph -> inf ( { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } , RR , < ) e. { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } ) |
114 |
8 113
|
eqeltrid |
|- ( ph -> I e. { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } ) |
115 |
26 114
|
sselid |
|- ( ph -> I e. ZZ ) |
116 |
|
tpssi |
|- ( ( ( abs ` ( A ` 0 ) ) e. ZZ /\ ( ! ` M ) e. ZZ /\ I e. ZZ ) -> { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ ZZ ) |
117 |
18 23 115 116
|
syl3anc |
|- ( ph -> { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ ZZ ) |
118 |
|
xrltso |
|- < Or RR* |
119 |
118
|
a1i |
|- ( ph -> < Or RR* ) |
120 |
|
tpfi |
|- { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } e. Fin |
121 |
120
|
a1i |
|- ( ph -> { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } e. Fin ) |
122 |
18
|
tpnzd |
|- ( ph -> { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } =/= (/) ) |
123 |
|
zssre |
|- ZZ C_ RR |
124 |
|
ressxr |
|- RR C_ RR* |
125 |
123 124
|
sstri |
|- ZZ C_ RR* |
126 |
117 125
|
sstrdi |
|- ( ph -> { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ RR* ) |
127 |
|
fisupcl |
|- ( ( < Or RR* /\ ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } e. Fin /\ { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } =/= (/) /\ { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ RR* ) ) -> sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) |
128 |
119 121 122 126 127
|
syl13anc |
|- ( ph -> sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) |
129 |
9 128
|
eqeltrid |
|- ( ph -> T e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) |
130 |
117 129
|
sseldd |
|- ( ph -> T e. ZZ ) |
131 |
|
0red |
|- ( ph -> 0 e. RR ) |
132 |
22
|
nnred |
|- ( ph -> ( ! ` M ) e. RR ) |
133 |
130
|
zred |
|- ( ph -> T e. RR ) |
134 |
22
|
nngt0d |
|- ( ph -> 0 < ( ! ` M ) ) |
135 |
|
fvex |
|- ( ! ` M ) e. _V |
136 |
135
|
tpid2 |
|- ( ! ` M ) e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } |
137 |
|
supxrub |
|- ( ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ RR* /\ ( ! ` M ) e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) -> ( ! ` M ) <_ sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) ) |
138 |
126 136 137
|
sylancl |
|- ( ph -> ( ! ` M ) <_ sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) ) |
139 |
138 9
|
breqtrrdi |
|- ( ph -> ( ! ` M ) <_ T ) |
140 |
131 132 133 134 139
|
ltletrd |
|- ( ph -> 0 < T ) |
141 |
|
elnnz |
|- ( T e. NN <-> ( T e. ZZ /\ 0 < T ) ) |
142 |
130 140 141
|
sylanbrc |
|- ( ph -> T e. NN ) |
143 |
|
prmunb |
|- ( T e. NN -> E. p e. Prime T < p ) |
144 |
142 143
|
syl |
|- ( ph -> E. p e. Prime T < p ) |
145 |
1
|
3ad2ant1 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> Q e. ( ( Poly ` ZZ ) \ { 0p } ) ) |
146 |
2
|
3ad2ant1 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( Q ` _e ) = 0 ) |
147 |
4
|
3ad2ant1 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( A ` 0 ) =/= 0 ) |
148 |
|
simp2 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> p e. Prime ) |
149 |
16
|
zcnd |
|- ( ph -> ( A ` 0 ) e. CC ) |
150 |
149
|
3ad2ant1 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( A ` 0 ) e. CC ) |
151 |
150
|
abscld |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( abs ` ( A ` 0 ) ) e. RR ) |
152 |
133
|
3ad2ant1 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> T e. RR ) |
153 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
154 |
153
|
zred |
|- ( p e. Prime -> p e. RR ) |
155 |
154
|
3ad2ant2 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> p e. RR ) |
156 |
126
|
adantr |
|- ( ( ph /\ p e. Prime ) -> { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ RR* ) |
157 |
|
fvex |
|- ( abs ` ( A ` 0 ) ) e. _V |
158 |
157
|
tpid1 |
|- ( abs ` ( A ` 0 ) ) e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } |
159 |
|
supxrub |
|- ( ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ RR* /\ ( abs ` ( A ` 0 ) ) e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) -> ( abs ` ( A ` 0 ) ) <_ sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) ) |
160 |
156 158 159
|
sylancl |
|- ( ( ph /\ p e. Prime ) -> ( abs ` ( A ` 0 ) ) <_ sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) ) |
161 |
160 9
|
breqtrrdi |
|- ( ( ph /\ p e. Prime ) -> ( abs ` ( A ` 0 ) ) <_ T ) |
162 |
161
|
3adant3 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( abs ` ( A ` 0 ) ) <_ T ) |
163 |
|
simp3 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> T < p ) |
164 |
151 152 155 162 163
|
lelttrd |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( abs ` ( A ` 0 ) ) < p ) |
165 |
132
|
3ad2ant1 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( ! ` M ) e. RR ) |
166 |
139
|
3ad2ant1 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( ! ` M ) <_ T ) |
167 |
165 152 155 166 163
|
lelttrd |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( ! ` M ) < p ) |
168 |
6
|
a1i |
|- ( n = ( p - 1 ) -> C = sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) ) |
169 |
|
oveq2 |
|- ( n = ( p - 1 ) -> ( ( M ^ ( M + 1 ) ) ^ n ) = ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) ) |
170 |
|
fveq2 |
|- ( n = ( p - 1 ) -> ( ! ` n ) = ( ! ` ( p - 1 ) ) ) |
171 |
169 170
|
oveq12d |
|- ( n = ( p - 1 ) -> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) = ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) |
172 |
168 171
|
oveq12d |
|- ( n = ( p - 1 ) -> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) ) |
173 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
174 |
|
nnm1nn0 |
|- ( p e. NN -> ( p - 1 ) e. NN0 ) |
175 |
173 174
|
syl |
|- ( p e. Prime -> ( p - 1 ) e. NN0 ) |
176 |
175
|
adantl |
|- ( ( ph /\ p e. Prime ) -> ( p - 1 ) e. NN0 ) |
177 |
61
|
adantr |
|- ( ( ph /\ p e. Prime ) -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. CC ) |
178 |
57
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( M ^ ( M + 1 ) ) e. CC ) |
179 |
178 176
|
expcld |
|- ( ( ph /\ p e. Prime ) -> ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) e. CC ) |
180 |
175
|
faccld |
|- ( p e. Prime -> ( ! ` ( p - 1 ) ) e. NN ) |
181 |
180
|
nncnd |
|- ( p e. Prime -> ( ! ` ( p - 1 ) ) e. CC ) |
182 |
181
|
adantl |
|- ( ( ph /\ p e. Prime ) -> ( ! ` ( p - 1 ) ) e. CC ) |
183 |
180
|
nnne0d |
|- ( p e. Prime -> ( ! ` ( p - 1 ) ) =/= 0 ) |
184 |
183
|
adantl |
|- ( ( ph /\ p e. Prime ) -> ( ! ` ( p - 1 ) ) =/= 0 ) |
185 |
179 182 184
|
divcld |
|- ( ( ph /\ p e. Prime ) -> ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) e. CC ) |
186 |
177 185
|
mulcld |
|- ( ( ph /\ p e. Prime ) -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) e. CC ) |
187 |
7 172 176 186
|
fvmptd3 |
|- ( ( ph /\ p e. Prime ) -> ( S ` ( p - 1 ) ) = ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) ) |
188 |
187
|
eqcomd |
|- ( ( ph /\ p e. Prime ) -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) = ( S ` ( p - 1 ) ) ) |
189 |
188
|
3adant3 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) = ( S ` ( p - 1 ) ) ) |
190 |
115
|
3ad2ant1 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> I e. ZZ ) |
191 |
|
1zzd |
|- ( p e. Prime -> 1 e. ZZ ) |
192 |
153 191
|
zsubcld |
|- ( p e. Prime -> ( p - 1 ) e. ZZ ) |
193 |
192
|
3ad2ant2 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( p - 1 ) e. ZZ ) |
194 |
190
|
zred |
|- ( ( ph /\ p e. Prime /\ T < p ) -> I e. RR ) |
195 |
|
tpid3g |
|- ( I e. ZZ -> I e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) |
196 |
115 195
|
syl |
|- ( ph -> I e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) |
197 |
|
supxrub |
|- ( ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ RR* /\ I e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) -> I <_ sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) ) |
198 |
126 196 197
|
syl2anc |
|- ( ph -> I <_ sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) ) |
199 |
198 9
|
breqtrrdi |
|- ( ph -> I <_ T ) |
200 |
199
|
3ad2ant1 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> I <_ T ) |
201 |
194 152 155 200 163
|
lelttrd |
|- ( ( ph /\ p e. Prime /\ T < p ) -> I < p ) |
202 |
153
|
3ad2ant2 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> p e. ZZ ) |
203 |
|
zltlem1 |
|- ( ( I e. ZZ /\ p e. ZZ ) -> ( I < p <-> I <_ ( p - 1 ) ) ) |
204 |
190 202 203
|
syl2anc |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( I < p <-> I <_ ( p - 1 ) ) ) |
205 |
201 204
|
mpbid |
|- ( ( ph /\ p e. Prime /\ T < p ) -> I <_ ( p - 1 ) ) |
206 |
|
eluz2 |
|- ( ( p - 1 ) e. ( ZZ>= ` I ) <-> ( I e. ZZ /\ ( p - 1 ) e. ZZ /\ I <_ ( p - 1 ) ) ) |
207 |
190 193 205 206
|
syl3anbrc |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( p - 1 ) e. ( ZZ>= ` I ) ) |
208 |
114
|
3ad2ant1 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> I e. { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } ) |
209 |
|
fveq2 |
|- ( i = I -> ( ZZ>= ` i ) = ( ZZ>= ` I ) ) |
210 |
209
|
raleqdv |
|- ( i = I -> ( A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 <-> A. n e. ( ZZ>= ` I ) ( abs ` ( S ` n ) ) < 1 ) ) |
211 |
210
|
elrab |
|- ( I e. { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } <-> ( I e. NN0 /\ A. n e. ( ZZ>= ` I ) ( abs ` ( S ` n ) ) < 1 ) ) |
212 |
208 211
|
sylib |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( I e. NN0 /\ A. n e. ( ZZ>= ` I ) ( abs ` ( S ` n ) ) < 1 ) ) |
213 |
212
|
simprd |
|- ( ( ph /\ p e. Prime /\ T < p ) -> A. n e. ( ZZ>= ` I ) ( abs ` ( S ` n ) ) < 1 ) |
214 |
|
nfcv |
|- F/_ n abs |
215 |
|
nfcv |
|- F/_ n ( p - 1 ) |
216 |
34 215
|
nffv |
|- F/_ n ( S ` ( p - 1 ) ) |
217 |
214 216
|
nffv |
|- F/_ n ( abs ` ( S ` ( p - 1 ) ) ) |
218 |
|
nfcv |
|- F/_ n < |
219 |
|
nfcv |
|- F/_ n 1 |
220 |
217 218 219
|
nfbr |
|- F/ n ( abs ` ( S ` ( p - 1 ) ) ) < 1 |
221 |
|
2fveq3 |
|- ( n = ( p - 1 ) -> ( abs ` ( S ` n ) ) = ( abs ` ( S ` ( p - 1 ) ) ) ) |
222 |
221
|
breq1d |
|- ( n = ( p - 1 ) -> ( ( abs ` ( S ` n ) ) < 1 <-> ( abs ` ( S ` ( p - 1 ) ) ) < 1 ) ) |
223 |
220 222
|
rspc |
|- ( ( p - 1 ) e. ( ZZ>= ` I ) -> ( A. n e. ( ZZ>= ` I ) ( abs ` ( S ` n ) ) < 1 -> ( abs ` ( S ` ( p - 1 ) ) ) < 1 ) ) |
224 |
207 213 223
|
sylc |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( abs ` ( S ` ( p - 1 ) ) ) < 1 ) |
225 |
171
|
oveq2d |
|- ( n = ( p - 1 ) -> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) = ( C x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) ) |
226 |
|
ovexd |
|- ( ( ph /\ p e. Prime ) -> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) e. _V ) |
227 |
7 225 176 226
|
fvmptd3 |
|- ( ( ph /\ p e. Prime ) -> ( S ` ( p - 1 ) ) = ( C x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) ) |
228 |
21
|
nn0red |
|- ( ph -> M e. RR ) |
229 |
228 56
|
reexpcld |
|- ( ph -> ( M ^ ( M + 1 ) ) e. RR ) |
230 |
228 229
|
remulcld |
|- ( ph -> ( M x. ( M ^ ( M + 1 ) ) ) e. RR ) |
231 |
230
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( M x. ( M ^ ( M + 1 ) ) ) e. RR ) |
232 |
52 231
|
remulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. RR ) |
233 |
38 232
|
fsumrecl |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. RR ) |
234 |
6 233
|
eqeltrid |
|- ( ph -> C e. RR ) |
235 |
234
|
adantr |
|- ( ( ph /\ p e. Prime ) -> C e. RR ) |
236 |
229
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( M ^ ( M + 1 ) ) e. RR ) |
237 |
236 176
|
reexpcld |
|- ( ( ph /\ p e. Prime ) -> ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) e. RR ) |
238 |
180
|
nnred |
|- ( p e. Prime -> ( ! ` ( p - 1 ) ) e. RR ) |
239 |
238
|
adantl |
|- ( ( ph /\ p e. Prime ) -> ( ! ` ( p - 1 ) ) e. RR ) |
240 |
237 239 184
|
redivcld |
|- ( ( ph /\ p e. Prime ) -> ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) e. RR ) |
241 |
235 240
|
remulcld |
|- ( ( ph /\ p e. Prime ) -> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) e. RR ) |
242 |
227 241
|
eqeltrd |
|- ( ( ph /\ p e. Prime ) -> ( S ` ( p - 1 ) ) e. RR ) |
243 |
242
|
3adant3 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( S ` ( p - 1 ) ) e. RR ) |
244 |
|
1red |
|- ( ( ph /\ p e. Prime /\ T < p ) -> 1 e. RR ) |
245 |
243 244
|
absltd |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( ( abs ` ( S ` ( p - 1 ) ) ) < 1 <-> ( -u 1 < ( S ` ( p - 1 ) ) /\ ( S ` ( p - 1 ) ) < 1 ) ) ) |
246 |
224 245
|
mpbid |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( -u 1 < ( S ` ( p - 1 ) ) /\ ( S ` ( p - 1 ) ) < 1 ) ) |
247 |
246
|
simprd |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( S ` ( p - 1 ) ) < 1 ) |
248 |
189 247
|
eqbrtrd |
|- ( ( ph /\ p e. Prime /\ T < p ) -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) < 1 ) |
249 |
|
etransclem6 |
|- ( y e. RR |-> ( ( y ^ ( p - 1 ) ) x. prod_ z e. ( 1 ... M ) ( ( y - z ) ^ p ) ) ) = ( x e. RR |-> ( ( x ^ ( p - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ p ) ) ) |
250 |
|
eqid |
|- sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( ( y e. RR |-> ( ( y ^ ( p - 1 ) ) x. prod_ z e. ( 1 ... M ) ( ( y - z ) ^ p ) ) ) ` x ) ) _d x ) = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( ( y e. RR |-> ( ( y ^ ( p - 1 ) ) x. prod_ z e. ( 1 ... M ) ( ( y - z ) ^ p ) ) ) ` x ) ) _d x ) |
251 |
|
eqid |
|- ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( ( y e. RR |-> ( ( y ^ ( p - 1 ) ) x. prod_ z e. ( 1 ... M ) ( ( y - z ) ^ p ) ) ) ` x ) ) _d x ) / ( ! ` ( p - 1 ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( ( y e. RR |-> ( ( y ^ ( p - 1 ) ) x. prod_ z e. ( 1 ... M ) ( ( y - z ) ^ p ) ) ) ` x ) ) _d x ) / ( ! ` ( p - 1 ) ) ) |
252 |
145 146 3 147 5 148 164 167 248 249 250 251
|
etransclem47 |
|- ( ( ph /\ p e. Prime /\ T < p ) -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) |
253 |
252
|
rexlimdv3a |
|- ( ph -> ( E. p e. Prime T < p -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) ) |
254 |
144 253
|
mpd |
|- ( ph -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) |