| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem48.q |  |-  ( ph -> Q e. ( ( Poly ` ZZ ) \ { 0p } ) ) | 
						
							| 2 |  | etransclem48.qe0 |  |-  ( ph -> ( Q ` _e ) = 0 ) | 
						
							| 3 |  | etransclem48.a |  |-  A = ( coeff ` Q ) | 
						
							| 4 |  | etransclem48.a0 |  |-  ( ph -> ( A ` 0 ) =/= 0 ) | 
						
							| 5 |  | etransclem48.m |  |-  M = ( deg ` Q ) | 
						
							| 6 |  | etransclem48.c |  |-  C = sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) | 
						
							| 7 |  | etransclem48.s |  |-  S = ( n e. NN0 |-> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) | 
						
							| 8 |  | etransclem48.i |  |-  I = inf ( { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } , RR , < ) | 
						
							| 9 |  | etransclem48.t |  |-  T = sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) | 
						
							| 10 | 1 | eldifad |  |-  ( ph -> Q e. ( Poly ` ZZ ) ) | 
						
							| 11 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 12 | 3 | coef2 |  |-  ( ( Q e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> A : NN0 --> ZZ ) | 
						
							| 13 | 10 11 12 | syl2anc |  |-  ( ph -> A : NN0 --> ZZ ) | 
						
							| 14 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 15 | 14 | a1i |  |-  ( ph -> 0 e. NN0 ) | 
						
							| 16 | 13 15 | ffvelcdmd |  |-  ( ph -> ( A ` 0 ) e. ZZ ) | 
						
							| 17 |  | zabscl |  |-  ( ( A ` 0 ) e. ZZ -> ( abs ` ( A ` 0 ) ) e. ZZ ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> ( abs ` ( A ` 0 ) ) e. ZZ ) | 
						
							| 19 |  | dgrcl |  |-  ( Q e. ( Poly ` ZZ ) -> ( deg ` Q ) e. NN0 ) | 
						
							| 20 | 10 19 | syl |  |-  ( ph -> ( deg ` Q ) e. NN0 ) | 
						
							| 21 | 5 20 | eqeltrid |  |-  ( ph -> M e. NN0 ) | 
						
							| 22 | 21 | faccld |  |-  ( ph -> ( ! ` M ) e. NN ) | 
						
							| 23 | 22 | nnzd |  |-  ( ph -> ( ! ` M ) e. ZZ ) | 
						
							| 24 |  | ssrab2 |  |-  { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } C_ NN0 | 
						
							| 25 |  | nn0ssz |  |-  NN0 C_ ZZ | 
						
							| 26 | 24 25 | sstri |  |-  { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } C_ ZZ | 
						
							| 27 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 28 | 24 27 | sseqtri |  |-  { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } C_ ( ZZ>= ` 0 ) | 
						
							| 29 |  | 1rp |  |-  1 e. RR+ | 
						
							| 30 |  | nfv |  |-  F/ n ph | 
						
							| 31 |  | nfmpt1 |  |-  F/_ n ( n e. NN0 |-> C ) | 
						
							| 32 |  | nfmpt1 |  |-  F/_ n ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) | 
						
							| 33 |  | nfmpt1 |  |-  F/_ n ( n e. NN0 |-> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) | 
						
							| 34 | 7 33 | nfcxfr |  |-  F/_ n S | 
						
							| 35 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 36 | 35 | mptex |  |-  ( n e. NN0 |-> C ) e. _V | 
						
							| 37 | 36 | a1i |  |-  ( ph -> ( n e. NN0 |-> C ) e. _V ) | 
						
							| 38 |  | fzfid |  |-  ( ph -> ( 0 ... M ) e. Fin ) | 
						
							| 39 | 13 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> A : NN0 --> ZZ ) | 
						
							| 40 |  | elfznn0 |  |-  ( j e. ( 0 ... M ) -> j e. NN0 ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> j e. NN0 ) | 
						
							| 42 | 39 41 | ffvelcdmd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. ZZ ) | 
						
							| 43 | 42 | zcnd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. CC ) | 
						
							| 44 |  | ere |  |-  _e e. RR | 
						
							| 45 | 44 | recni |  |-  _e e. CC | 
						
							| 46 | 45 | a1i |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> _e e. CC ) | 
						
							| 47 |  | elfzelz |  |-  ( j e. ( 0 ... M ) -> j e. ZZ ) | 
						
							| 48 | 47 | zcnd |  |-  ( j e. ( 0 ... M ) -> j e. CC ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> j e. CC ) | 
						
							| 50 | 46 49 | cxpcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( _e ^c j ) e. CC ) | 
						
							| 51 | 43 50 | mulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( _e ^c j ) ) e. CC ) | 
						
							| 52 | 51 | abscld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) e. RR ) | 
						
							| 53 | 52 | recnd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) e. CC ) | 
						
							| 54 | 21 | nn0cnd |  |-  ( ph -> M e. CC ) | 
						
							| 55 |  | peano2nn0 |  |-  ( M e. NN0 -> ( M + 1 ) e. NN0 ) | 
						
							| 56 | 21 55 | syl |  |-  ( ph -> ( M + 1 ) e. NN0 ) | 
						
							| 57 | 54 56 | expcld |  |-  ( ph -> ( M ^ ( M + 1 ) ) e. CC ) | 
						
							| 58 | 54 57 | mulcld |  |-  ( ph -> ( M x. ( M ^ ( M + 1 ) ) ) e. CC ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( M x. ( M ^ ( M + 1 ) ) ) e. CC ) | 
						
							| 60 | 53 59 | mulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. CC ) | 
						
							| 61 | 38 60 | fsumcl |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. CC ) | 
						
							| 62 | 6 61 | eqeltrid |  |-  ( ph -> C e. CC ) | 
						
							| 63 |  | eqidd |  |-  ( ( ph /\ i e. NN0 ) -> ( n e. NN0 |-> C ) = ( n e. NN0 |-> C ) ) | 
						
							| 64 |  | eqidd |  |-  ( ( ( ph /\ i e. NN0 ) /\ n = i ) -> C = C ) | 
						
							| 65 |  | simpr |  |-  ( ( ph /\ i e. NN0 ) -> i e. NN0 ) | 
						
							| 66 | 62 | adantr |  |-  ( ( ph /\ i e. NN0 ) -> C e. CC ) | 
						
							| 67 | 63 64 65 66 | fvmptd |  |-  ( ( ph /\ i e. NN0 ) -> ( ( n e. NN0 |-> C ) ` i ) = C ) | 
						
							| 68 | 27 11 37 62 67 | climconst |  |-  ( ph -> ( n e. NN0 |-> C ) ~~> C ) | 
						
							| 69 | 35 | mptex |  |-  ( n e. NN0 |-> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) e. _V | 
						
							| 70 | 7 69 | eqeltri |  |-  S e. _V | 
						
							| 71 | 70 | a1i |  |-  ( ph -> S e. _V ) | 
						
							| 72 |  | eqid |  |-  ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) | 
						
							| 73 | 72 | expfac |  |-  ( ( M ^ ( M + 1 ) ) e. CC -> ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ~~> 0 ) | 
						
							| 74 | 57 73 | syl |  |-  ( ph -> ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ~~> 0 ) | 
						
							| 75 |  | simpr |  |-  ( ( ph /\ n e. NN0 ) -> n e. NN0 ) | 
						
							| 76 | 62 | adantr |  |-  ( ( ph /\ n e. NN0 ) -> C e. CC ) | 
						
							| 77 |  | eqid |  |-  ( n e. NN0 |-> C ) = ( n e. NN0 |-> C ) | 
						
							| 78 | 77 | fvmpt2 |  |-  ( ( n e. NN0 /\ C e. CC ) -> ( ( n e. NN0 |-> C ) ` n ) = C ) | 
						
							| 79 | 75 76 78 | syl2anc |  |-  ( ( ph /\ n e. NN0 ) -> ( ( n e. NN0 |-> C ) ` n ) = C ) | 
						
							| 80 | 79 76 | eqeltrd |  |-  ( ( ph /\ n e. NN0 ) -> ( ( n e. NN0 |-> C ) ` n ) e. CC ) | 
						
							| 81 |  | ovex |  |-  ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) e. _V | 
						
							| 82 | 72 | fvmpt2 |  |-  ( ( n e. NN0 /\ ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) e. _V ) -> ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) = ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) | 
						
							| 83 | 81 82 | mpan2 |  |-  ( n e. NN0 -> ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) = ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) | 
						
							| 84 | 83 | adantl |  |-  ( ( ph /\ n e. NN0 ) -> ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) = ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) | 
						
							| 85 | 57 | adantr |  |-  ( ( ph /\ n e. NN0 ) -> ( M ^ ( M + 1 ) ) e. CC ) | 
						
							| 86 | 85 75 | expcld |  |-  ( ( ph /\ n e. NN0 ) -> ( ( M ^ ( M + 1 ) ) ^ n ) e. CC ) | 
						
							| 87 | 75 | faccld |  |-  ( ( ph /\ n e. NN0 ) -> ( ! ` n ) e. NN ) | 
						
							| 88 | 87 | nncnd |  |-  ( ( ph /\ n e. NN0 ) -> ( ! ` n ) e. CC ) | 
						
							| 89 | 87 | nnne0d |  |-  ( ( ph /\ n e. NN0 ) -> ( ! ` n ) =/= 0 ) | 
						
							| 90 | 86 88 89 | divcld |  |-  ( ( ph /\ n e. NN0 ) -> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) e. CC ) | 
						
							| 91 | 84 90 | eqeltrd |  |-  ( ( ph /\ n e. NN0 ) -> ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) e. CC ) | 
						
							| 92 |  | ovex |  |-  ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) e. _V | 
						
							| 93 | 7 | fvmpt2 |  |-  ( ( n e. NN0 /\ ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) e. _V ) -> ( S ` n ) = ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) | 
						
							| 94 | 92 93 | mpan2 |  |-  ( n e. NN0 -> ( S ` n ) = ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) | 
						
							| 95 | 94 | adantl |  |-  ( ( ph /\ n e. NN0 ) -> ( S ` n ) = ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) | 
						
							| 96 | 79 84 | oveq12d |  |-  ( ( ph /\ n e. NN0 ) -> ( ( ( n e. NN0 |-> C ) ` n ) x. ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) ) = ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) | 
						
							| 97 | 95 96 | eqtr4d |  |-  ( ( ph /\ n e. NN0 ) -> ( S ` n ) = ( ( ( n e. NN0 |-> C ) ` n ) x. ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) ) ) | 
						
							| 98 | 30 31 32 34 27 11 68 71 74 80 91 97 | climmulf |  |-  ( ph -> S ~~> ( C x. 0 ) ) | 
						
							| 99 | 62 | mul01d |  |-  ( ph -> ( C x. 0 ) = 0 ) | 
						
							| 100 | 98 99 | breqtrd |  |-  ( ph -> S ~~> 0 ) | 
						
							| 101 |  | eqidd |  |-  ( ( ph /\ n e. NN0 ) -> ( S ` n ) = ( S ` n ) ) | 
						
							| 102 | 80 91 | mulcld |  |-  ( ( ph /\ n e. NN0 ) -> ( ( ( n e. NN0 |-> C ) ` n ) x. ( ( n e. NN0 |-> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) ` n ) ) e. CC ) | 
						
							| 103 | 97 102 | eqeltrd |  |-  ( ( ph /\ n e. NN0 ) -> ( S ` n ) e. CC ) | 
						
							| 104 | 34 27 11 71 101 103 | clim0cf |  |-  ( ph -> ( S ~~> 0 <-> A. e e. RR+ E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < e ) ) | 
						
							| 105 | 100 104 | mpbid |  |-  ( ph -> A. e e. RR+ E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < e ) | 
						
							| 106 |  | breq2 |  |-  ( e = 1 -> ( ( abs ` ( S ` n ) ) < e <-> ( abs ` ( S ` n ) ) < 1 ) ) | 
						
							| 107 | 106 | rexralbidv |  |-  ( e = 1 -> ( E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < e <-> E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 ) ) | 
						
							| 108 | 107 | rspcva |  |-  ( ( 1 e. RR+ /\ A. e e. RR+ E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < e ) -> E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 ) | 
						
							| 109 | 29 105 108 | sylancr |  |-  ( ph -> E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 ) | 
						
							| 110 |  | rabn0 |  |-  ( { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } =/= (/) <-> E. i e. NN0 A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 ) | 
						
							| 111 | 109 110 | sylibr |  |-  ( ph -> { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } =/= (/) ) | 
						
							| 112 |  | infssuzcl |  |-  ( ( { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } C_ ( ZZ>= ` 0 ) /\ { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } =/= (/) ) -> inf ( { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } , RR , < ) e. { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } ) | 
						
							| 113 | 28 111 112 | sylancr |  |-  ( ph -> inf ( { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } , RR , < ) e. { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } ) | 
						
							| 114 | 8 113 | eqeltrid |  |-  ( ph -> I e. { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } ) | 
						
							| 115 | 26 114 | sselid |  |-  ( ph -> I e. ZZ ) | 
						
							| 116 |  | tpssi |  |-  ( ( ( abs ` ( A ` 0 ) ) e. ZZ /\ ( ! ` M ) e. ZZ /\ I e. ZZ ) -> { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ ZZ ) | 
						
							| 117 | 18 23 115 116 | syl3anc |  |-  ( ph -> { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ ZZ ) | 
						
							| 118 |  | xrltso |  |-  < Or RR* | 
						
							| 119 | 118 | a1i |  |-  ( ph -> < Or RR* ) | 
						
							| 120 |  | tpfi |  |-  { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } e. Fin | 
						
							| 121 | 120 | a1i |  |-  ( ph -> { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } e. Fin ) | 
						
							| 122 | 18 | tpnzd |  |-  ( ph -> { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } =/= (/) ) | 
						
							| 123 |  | zssre |  |-  ZZ C_ RR | 
						
							| 124 |  | ressxr |  |-  RR C_ RR* | 
						
							| 125 | 123 124 | sstri |  |-  ZZ C_ RR* | 
						
							| 126 | 117 125 | sstrdi |  |-  ( ph -> { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ RR* ) | 
						
							| 127 |  | fisupcl |  |-  ( ( < Or RR* /\ ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } e. Fin /\ { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } =/= (/) /\ { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ RR* ) ) -> sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) | 
						
							| 128 | 119 121 122 126 127 | syl13anc |  |-  ( ph -> sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) | 
						
							| 129 | 9 128 | eqeltrid |  |-  ( ph -> T e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) | 
						
							| 130 | 117 129 | sseldd |  |-  ( ph -> T e. ZZ ) | 
						
							| 131 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 132 | 22 | nnred |  |-  ( ph -> ( ! ` M ) e. RR ) | 
						
							| 133 | 130 | zred |  |-  ( ph -> T e. RR ) | 
						
							| 134 | 22 | nngt0d |  |-  ( ph -> 0 < ( ! ` M ) ) | 
						
							| 135 |  | fvex |  |-  ( ! ` M ) e. _V | 
						
							| 136 | 135 | tpid2 |  |-  ( ! ` M ) e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } | 
						
							| 137 |  | supxrub |  |-  ( ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ RR* /\ ( ! ` M ) e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) -> ( ! ` M ) <_ sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) ) | 
						
							| 138 | 126 136 137 | sylancl |  |-  ( ph -> ( ! ` M ) <_ sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) ) | 
						
							| 139 | 138 9 | breqtrrdi |  |-  ( ph -> ( ! ` M ) <_ T ) | 
						
							| 140 | 131 132 133 134 139 | ltletrd |  |-  ( ph -> 0 < T ) | 
						
							| 141 |  | elnnz |  |-  ( T e. NN <-> ( T e. ZZ /\ 0 < T ) ) | 
						
							| 142 | 130 140 141 | sylanbrc |  |-  ( ph -> T e. NN ) | 
						
							| 143 |  | prmunb |  |-  ( T e. NN -> E. p e. Prime T < p ) | 
						
							| 144 | 142 143 | syl |  |-  ( ph -> E. p e. Prime T < p ) | 
						
							| 145 | 1 | 3ad2ant1 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> Q e. ( ( Poly ` ZZ ) \ { 0p } ) ) | 
						
							| 146 | 2 | 3ad2ant1 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( Q ` _e ) = 0 ) | 
						
							| 147 | 4 | 3ad2ant1 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( A ` 0 ) =/= 0 ) | 
						
							| 148 |  | simp2 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> p e. Prime ) | 
						
							| 149 | 16 | zcnd |  |-  ( ph -> ( A ` 0 ) e. CC ) | 
						
							| 150 | 149 | 3ad2ant1 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( A ` 0 ) e. CC ) | 
						
							| 151 | 150 | abscld |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( abs ` ( A ` 0 ) ) e. RR ) | 
						
							| 152 | 133 | 3ad2ant1 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> T e. RR ) | 
						
							| 153 |  | prmz |  |-  ( p e. Prime -> p e. ZZ ) | 
						
							| 154 | 153 | zred |  |-  ( p e. Prime -> p e. RR ) | 
						
							| 155 | 154 | 3ad2ant2 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> p e. RR ) | 
						
							| 156 | 126 | adantr |  |-  ( ( ph /\ p e. Prime ) -> { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ RR* ) | 
						
							| 157 |  | fvex |  |-  ( abs ` ( A ` 0 ) ) e. _V | 
						
							| 158 | 157 | tpid1 |  |-  ( abs ` ( A ` 0 ) ) e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } | 
						
							| 159 |  | supxrub |  |-  ( ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ RR* /\ ( abs ` ( A ` 0 ) ) e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) -> ( abs ` ( A ` 0 ) ) <_ sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) ) | 
						
							| 160 | 156 158 159 | sylancl |  |-  ( ( ph /\ p e. Prime ) -> ( abs ` ( A ` 0 ) ) <_ sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) ) | 
						
							| 161 | 160 9 | breqtrrdi |  |-  ( ( ph /\ p e. Prime ) -> ( abs ` ( A ` 0 ) ) <_ T ) | 
						
							| 162 | 161 | 3adant3 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( abs ` ( A ` 0 ) ) <_ T ) | 
						
							| 163 |  | simp3 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> T < p ) | 
						
							| 164 | 151 152 155 162 163 | lelttrd |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( abs ` ( A ` 0 ) ) < p ) | 
						
							| 165 | 132 | 3ad2ant1 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( ! ` M ) e. RR ) | 
						
							| 166 | 139 | 3ad2ant1 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( ! ` M ) <_ T ) | 
						
							| 167 | 165 152 155 166 163 | lelttrd |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( ! ` M ) < p ) | 
						
							| 168 | 6 | a1i |  |-  ( n = ( p - 1 ) -> C = sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) ) | 
						
							| 169 |  | oveq2 |  |-  ( n = ( p - 1 ) -> ( ( M ^ ( M + 1 ) ) ^ n ) = ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) ) | 
						
							| 170 |  | fveq2 |  |-  ( n = ( p - 1 ) -> ( ! ` n ) = ( ! ` ( p - 1 ) ) ) | 
						
							| 171 | 169 170 | oveq12d |  |-  ( n = ( p - 1 ) -> ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) = ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) | 
						
							| 172 | 168 171 | oveq12d |  |-  ( n = ( p - 1 ) -> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) ) | 
						
							| 173 |  | prmnn |  |-  ( p e. Prime -> p e. NN ) | 
						
							| 174 |  | nnm1nn0 |  |-  ( p e. NN -> ( p - 1 ) e. NN0 ) | 
						
							| 175 | 173 174 | syl |  |-  ( p e. Prime -> ( p - 1 ) e. NN0 ) | 
						
							| 176 | 175 | adantl |  |-  ( ( ph /\ p e. Prime ) -> ( p - 1 ) e. NN0 ) | 
						
							| 177 | 61 | adantr |  |-  ( ( ph /\ p e. Prime ) -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. CC ) | 
						
							| 178 | 57 | adantr |  |-  ( ( ph /\ p e. Prime ) -> ( M ^ ( M + 1 ) ) e. CC ) | 
						
							| 179 | 178 176 | expcld |  |-  ( ( ph /\ p e. Prime ) -> ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) e. CC ) | 
						
							| 180 | 175 | faccld |  |-  ( p e. Prime -> ( ! ` ( p - 1 ) ) e. NN ) | 
						
							| 181 | 180 | nncnd |  |-  ( p e. Prime -> ( ! ` ( p - 1 ) ) e. CC ) | 
						
							| 182 | 181 | adantl |  |-  ( ( ph /\ p e. Prime ) -> ( ! ` ( p - 1 ) ) e. CC ) | 
						
							| 183 | 180 | nnne0d |  |-  ( p e. Prime -> ( ! ` ( p - 1 ) ) =/= 0 ) | 
						
							| 184 | 183 | adantl |  |-  ( ( ph /\ p e. Prime ) -> ( ! ` ( p - 1 ) ) =/= 0 ) | 
						
							| 185 | 179 182 184 | divcld |  |-  ( ( ph /\ p e. Prime ) -> ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) e. CC ) | 
						
							| 186 | 177 185 | mulcld |  |-  ( ( ph /\ p e. Prime ) -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) e. CC ) | 
						
							| 187 | 7 172 176 186 | fvmptd3 |  |-  ( ( ph /\ p e. Prime ) -> ( S ` ( p - 1 ) ) = ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) ) | 
						
							| 188 | 187 | eqcomd |  |-  ( ( ph /\ p e. Prime ) -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) = ( S ` ( p - 1 ) ) ) | 
						
							| 189 | 188 | 3adant3 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) = ( S ` ( p - 1 ) ) ) | 
						
							| 190 | 115 | 3ad2ant1 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> I e. ZZ ) | 
						
							| 191 |  | 1zzd |  |-  ( p e. Prime -> 1 e. ZZ ) | 
						
							| 192 | 153 191 | zsubcld |  |-  ( p e. Prime -> ( p - 1 ) e. ZZ ) | 
						
							| 193 | 192 | 3ad2ant2 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( p - 1 ) e. ZZ ) | 
						
							| 194 | 190 | zred |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> I e. RR ) | 
						
							| 195 |  | tpid3g |  |-  ( I e. ZZ -> I e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) | 
						
							| 196 | 115 195 | syl |  |-  ( ph -> I e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) | 
						
							| 197 |  | supxrub |  |-  ( ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } C_ RR* /\ I e. { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } ) -> I <_ sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) ) | 
						
							| 198 | 126 196 197 | syl2anc |  |-  ( ph -> I <_ sup ( { ( abs ` ( A ` 0 ) ) , ( ! ` M ) , I } , RR* , < ) ) | 
						
							| 199 | 198 9 | breqtrrdi |  |-  ( ph -> I <_ T ) | 
						
							| 200 | 199 | 3ad2ant1 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> I <_ T ) | 
						
							| 201 | 194 152 155 200 163 | lelttrd |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> I < p ) | 
						
							| 202 | 153 | 3ad2ant2 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> p e. ZZ ) | 
						
							| 203 |  | zltlem1 |  |-  ( ( I e. ZZ /\ p e. ZZ ) -> ( I < p <-> I <_ ( p - 1 ) ) ) | 
						
							| 204 | 190 202 203 | syl2anc |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( I < p <-> I <_ ( p - 1 ) ) ) | 
						
							| 205 | 201 204 | mpbid |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> I <_ ( p - 1 ) ) | 
						
							| 206 |  | eluz2 |  |-  ( ( p - 1 ) e. ( ZZ>= ` I ) <-> ( I e. ZZ /\ ( p - 1 ) e. ZZ /\ I <_ ( p - 1 ) ) ) | 
						
							| 207 | 190 193 205 206 | syl3anbrc |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( p - 1 ) e. ( ZZ>= ` I ) ) | 
						
							| 208 | 114 | 3ad2ant1 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> I e. { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } ) | 
						
							| 209 |  | fveq2 |  |-  ( i = I -> ( ZZ>= ` i ) = ( ZZ>= ` I ) ) | 
						
							| 210 | 209 | raleqdv |  |-  ( i = I -> ( A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 <-> A. n e. ( ZZ>= ` I ) ( abs ` ( S ` n ) ) < 1 ) ) | 
						
							| 211 | 210 | elrab |  |-  ( I e. { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( S ` n ) ) < 1 } <-> ( I e. NN0 /\ A. n e. ( ZZ>= ` I ) ( abs ` ( S ` n ) ) < 1 ) ) | 
						
							| 212 | 208 211 | sylib |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( I e. NN0 /\ A. n e. ( ZZ>= ` I ) ( abs ` ( S ` n ) ) < 1 ) ) | 
						
							| 213 | 212 | simprd |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> A. n e. ( ZZ>= ` I ) ( abs ` ( S ` n ) ) < 1 ) | 
						
							| 214 |  | nfcv |  |-  F/_ n abs | 
						
							| 215 |  | nfcv |  |-  F/_ n ( p - 1 ) | 
						
							| 216 | 34 215 | nffv |  |-  F/_ n ( S ` ( p - 1 ) ) | 
						
							| 217 | 214 216 | nffv |  |-  F/_ n ( abs ` ( S ` ( p - 1 ) ) ) | 
						
							| 218 |  | nfcv |  |-  F/_ n < | 
						
							| 219 |  | nfcv |  |-  F/_ n 1 | 
						
							| 220 | 217 218 219 | nfbr |  |-  F/ n ( abs ` ( S ` ( p - 1 ) ) ) < 1 | 
						
							| 221 |  | 2fveq3 |  |-  ( n = ( p - 1 ) -> ( abs ` ( S ` n ) ) = ( abs ` ( S ` ( p - 1 ) ) ) ) | 
						
							| 222 | 221 | breq1d |  |-  ( n = ( p - 1 ) -> ( ( abs ` ( S ` n ) ) < 1 <-> ( abs ` ( S ` ( p - 1 ) ) ) < 1 ) ) | 
						
							| 223 | 220 222 | rspc |  |-  ( ( p - 1 ) e. ( ZZ>= ` I ) -> ( A. n e. ( ZZ>= ` I ) ( abs ` ( S ` n ) ) < 1 -> ( abs ` ( S ` ( p - 1 ) ) ) < 1 ) ) | 
						
							| 224 | 207 213 223 | sylc |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( abs ` ( S ` ( p - 1 ) ) ) < 1 ) | 
						
							| 225 | 171 | oveq2d |  |-  ( n = ( p - 1 ) -> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ n ) / ( ! ` n ) ) ) = ( C x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) ) | 
						
							| 226 |  | ovexd |  |-  ( ( ph /\ p e. Prime ) -> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) e. _V ) | 
						
							| 227 | 7 225 176 226 | fvmptd3 |  |-  ( ( ph /\ p e. Prime ) -> ( S ` ( p - 1 ) ) = ( C x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) ) | 
						
							| 228 | 21 | nn0red |  |-  ( ph -> M e. RR ) | 
						
							| 229 | 228 56 | reexpcld |  |-  ( ph -> ( M ^ ( M + 1 ) ) e. RR ) | 
						
							| 230 | 228 229 | remulcld |  |-  ( ph -> ( M x. ( M ^ ( M + 1 ) ) ) e. RR ) | 
						
							| 231 | 230 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( M x. ( M ^ ( M + 1 ) ) ) e. RR ) | 
						
							| 232 | 52 231 | remulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. RR ) | 
						
							| 233 | 38 232 | fsumrecl |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. RR ) | 
						
							| 234 | 6 233 | eqeltrid |  |-  ( ph -> C e. RR ) | 
						
							| 235 | 234 | adantr |  |-  ( ( ph /\ p e. Prime ) -> C e. RR ) | 
						
							| 236 | 229 | adantr |  |-  ( ( ph /\ p e. Prime ) -> ( M ^ ( M + 1 ) ) e. RR ) | 
						
							| 237 | 236 176 | reexpcld |  |-  ( ( ph /\ p e. Prime ) -> ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) e. RR ) | 
						
							| 238 | 180 | nnred |  |-  ( p e. Prime -> ( ! ` ( p - 1 ) ) e. RR ) | 
						
							| 239 | 238 | adantl |  |-  ( ( ph /\ p e. Prime ) -> ( ! ` ( p - 1 ) ) e. RR ) | 
						
							| 240 | 237 239 184 | redivcld |  |-  ( ( ph /\ p e. Prime ) -> ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) e. RR ) | 
						
							| 241 | 235 240 | remulcld |  |-  ( ( ph /\ p e. Prime ) -> ( C x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) e. RR ) | 
						
							| 242 | 227 241 | eqeltrd |  |-  ( ( ph /\ p e. Prime ) -> ( S ` ( p - 1 ) ) e. RR ) | 
						
							| 243 | 242 | 3adant3 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( S ` ( p - 1 ) ) e. RR ) | 
						
							| 244 |  | 1red |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> 1 e. RR ) | 
						
							| 245 | 243 244 | absltd |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( ( abs ` ( S ` ( p - 1 ) ) ) < 1 <-> ( -u 1 < ( S ` ( p - 1 ) ) /\ ( S ` ( p - 1 ) ) < 1 ) ) ) | 
						
							| 246 | 224 245 | mpbid |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( -u 1 < ( S ` ( p - 1 ) ) /\ ( S ` ( p - 1 ) ) < 1 ) ) | 
						
							| 247 | 246 | simprd |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( S ` ( p - 1 ) ) < 1 ) | 
						
							| 248 | 189 247 | eqbrtrd |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( p - 1 ) ) / ( ! ` ( p - 1 ) ) ) ) < 1 ) | 
						
							| 249 |  | etransclem6 |  |-  ( y e. RR |-> ( ( y ^ ( p - 1 ) ) x. prod_ z e. ( 1 ... M ) ( ( y - z ) ^ p ) ) ) = ( x e. RR |-> ( ( x ^ ( p - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ p ) ) ) | 
						
							| 250 |  | eqid |  |-  sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( ( y e. RR |-> ( ( y ^ ( p - 1 ) ) x. prod_ z e. ( 1 ... M ) ( ( y - z ) ^ p ) ) ) ` x ) ) _d x ) = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( ( y e. RR |-> ( ( y ^ ( p - 1 ) ) x. prod_ z e. ( 1 ... M ) ( ( y - z ) ^ p ) ) ) ` x ) ) _d x ) | 
						
							| 251 |  | eqid |  |-  ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( ( y e. RR |-> ( ( y ^ ( p - 1 ) ) x. prod_ z e. ( 1 ... M ) ( ( y - z ) ^ p ) ) ) ` x ) ) _d x ) / ( ! ` ( p - 1 ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( ( y e. RR |-> ( ( y ^ ( p - 1 ) ) x. prod_ z e. ( 1 ... M ) ( ( y - z ) ^ p ) ) ) ` x ) ) _d x ) / ( ! ` ( p - 1 ) ) ) | 
						
							| 252 | 145 146 3 147 5 148 164 167 248 249 250 251 | etransclem47 |  |-  ( ( ph /\ p e. Prime /\ T < p ) -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) | 
						
							| 253 | 252 | rexlimdv3a |  |-  ( ph -> ( E. p e. Prime T < p -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) ) | 
						
							| 254 | 144 253 | mpd |  |-  ( ph -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) |