| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( x = y -> ( x ^ ( P - 1 ) ) = ( y ^ ( P - 1 ) ) ) |
| 2 |
|
oveq2 |
|- ( j = k -> ( x - j ) = ( x - k ) ) |
| 3 |
2
|
oveq1d |
|- ( j = k -> ( ( x - j ) ^ P ) = ( ( x - k ) ^ P ) ) |
| 4 |
3
|
cbvprodv |
|- prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) = prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) |
| 5 |
|
oveq1 |
|- ( x = y -> ( x - k ) = ( y - k ) ) |
| 6 |
5
|
oveq1d |
|- ( x = y -> ( ( x - k ) ^ P ) = ( ( y - k ) ^ P ) ) |
| 7 |
6
|
prodeq2ad |
|- ( x = y -> prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) = prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) |
| 8 |
4 7
|
eqtrid |
|- ( x = y -> prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) = prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) |
| 9 |
1 8
|
oveq12d |
|- ( x = y -> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) = ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) |
| 10 |
9
|
cbvmptv |
|- ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) |