Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem8.x |
|- ( ph -> X C_ CC ) |
2 |
|
etransclem8.p |
|- ( ph -> P e. NN ) |
3 |
|
etransclem8.f |
|- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
4 |
1
|
sselda |
|- ( ( ph /\ x e. X ) -> x e. CC ) |
5 |
2
|
adantr |
|- ( ( ph /\ x e. X ) -> P e. NN ) |
6 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
7 |
5 6
|
syl |
|- ( ( ph /\ x e. X ) -> ( P - 1 ) e. NN0 ) |
8 |
4 7
|
expcld |
|- ( ( ph /\ x e. X ) -> ( x ^ ( P - 1 ) ) e. CC ) |
9 |
|
fzfid |
|- ( ( ph /\ x e. X ) -> ( 1 ... M ) e. Fin ) |
10 |
4
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> x e. CC ) |
11 |
|
elfzelz |
|- ( j e. ( 1 ... M ) -> j e. ZZ ) |
12 |
11
|
zcnd |
|- ( j e. ( 1 ... M ) -> j e. CC ) |
13 |
12
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> j e. CC ) |
14 |
10 13
|
subcld |
|- ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> ( x - j ) e. CC ) |
15 |
2
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
16 |
15
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> P e. NN0 ) |
17 |
14 16
|
expcld |
|- ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> ( ( x - j ) ^ P ) e. CC ) |
18 |
9 17
|
fprodcl |
|- ( ( ph /\ x e. X ) -> prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) e. CC ) |
19 |
8 18
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) e. CC ) |
20 |
19 3
|
fmptd |
|- ( ph -> F : X --> CC ) |