| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem9.k |  |-  ( ph -> K e. ZZ ) | 
						
							| 2 |  | etransclem9.kn0 |  |-  ( ph -> K =/= 0 ) | 
						
							| 3 |  | etransclem9.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | etransclem9.n |  |-  ( ph -> N e. ZZ ) | 
						
							| 5 |  | etransclem9.km |  |-  ( ph -> -. K || M ) | 
						
							| 6 |  | etransclem9.kn |  |-  ( ph -> K || N ) | 
						
							| 7 |  | dvdsval2 |  |-  ( ( K e. ZZ /\ K =/= 0 /\ M e. ZZ ) -> ( K || M <-> ( M / K ) e. ZZ ) ) | 
						
							| 8 | 1 2 3 7 | syl3anc |  |-  ( ph -> ( K || M <-> ( M / K ) e. ZZ ) ) | 
						
							| 9 | 5 8 | mtbid |  |-  ( ph -> -. ( M / K ) e. ZZ ) | 
						
							| 10 |  | df-neg |  |-  -u N = ( 0 - N ) | 
						
							| 11 | 10 | a1i |  |-  ( ( ph /\ ( M + N ) = 0 ) -> -u N = ( 0 - N ) ) | 
						
							| 12 |  | oveq1 |  |-  ( ( M + N ) = 0 -> ( ( M + N ) - N ) = ( 0 - N ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ( M + N ) = 0 -> ( 0 - N ) = ( ( M + N ) - N ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ ( M + N ) = 0 ) -> ( 0 - N ) = ( ( M + N ) - N ) ) | 
						
							| 15 | 3 | zcnd |  |-  ( ph -> M e. CC ) | 
						
							| 16 | 4 | zcnd |  |-  ( ph -> N e. CC ) | 
						
							| 17 | 15 16 | pncand |  |-  ( ph -> ( ( M + N ) - N ) = M ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ ( M + N ) = 0 ) -> ( ( M + N ) - N ) = M ) | 
						
							| 19 | 11 14 18 | 3eqtrrd |  |-  ( ( ph /\ ( M + N ) = 0 ) -> M = -u N ) | 
						
							| 20 | 19 | oveq1d |  |-  ( ( ph /\ ( M + N ) = 0 ) -> ( M / K ) = ( -u N / K ) ) | 
						
							| 21 |  | dvdsnegb |  |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( K || N <-> K || -u N ) ) | 
						
							| 22 | 1 4 21 | syl2anc |  |-  ( ph -> ( K || N <-> K || -u N ) ) | 
						
							| 23 | 6 22 | mpbid |  |-  ( ph -> K || -u N ) | 
						
							| 24 | 4 | znegcld |  |-  ( ph -> -u N e. ZZ ) | 
						
							| 25 |  | dvdsval2 |  |-  ( ( K e. ZZ /\ K =/= 0 /\ -u N e. ZZ ) -> ( K || -u N <-> ( -u N / K ) e. ZZ ) ) | 
						
							| 26 | 1 2 24 25 | syl3anc |  |-  ( ph -> ( K || -u N <-> ( -u N / K ) e. ZZ ) ) | 
						
							| 27 | 23 26 | mpbid |  |-  ( ph -> ( -u N / K ) e. ZZ ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ ( M + N ) = 0 ) -> ( -u N / K ) e. ZZ ) | 
						
							| 29 | 20 28 | eqeltrd |  |-  ( ( ph /\ ( M + N ) = 0 ) -> ( M / K ) e. ZZ ) | 
						
							| 30 | 9 29 | mtand |  |-  ( ph -> -. ( M + N ) = 0 ) | 
						
							| 31 | 30 | neqned |  |-  ( ph -> ( M + N ) =/= 0 ) |