Description: An alternate way of defining existential uniqueness. Definition 6.10 of TakeutiZaring p. 26. (Contributed by NM, 8-Jul-1994) (Proof shortened by Wolf Lammen, 2-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eu2.nf | |- F/ y ph |
|
Assertion | eu2 | |- ( E! x ph <-> ( E. x ph /\ A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu2.nf | |- F/ y ph |
|
2 | df-eu | |- ( E! x ph <-> ( E. x ph /\ E* x ph ) ) |
|
3 | 1 | mo3 | |- ( E* x ph <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
4 | 3 | anbi2i | |- ( ( E. x ph /\ E* x ph ) <-> ( E. x ph /\ A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
5 | 2 4 | bitri | |- ( E! x ph <-> ( E. x ph /\ A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |