Metamath Proof Explorer


Theorem eu3v

Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994) Replace a nonfreeness hypothesis with a disjoint variable condition on ph , y to reduce axiom usage. (Revised by Wolf Lammen, 29-May-2019)

Ref Expression
Assertion eu3v
|- ( E! x ph <-> ( E. x ph /\ E. y A. x ( ph -> x = y ) ) )

Proof

Step Hyp Ref Expression
1 df-eu
 |-  ( E! x ph <-> ( E. x ph /\ E* x ph ) )
2 df-mo
 |-  ( E* x ph <-> E. y A. x ( ph -> x = y ) )
3 2 anbi2i
 |-  ( ( E. x ph /\ E* x ph ) <-> ( E. x ph /\ E. y A. x ( ph -> x = y ) ) )
4 1 3 bitri
 |-  ( E! x ph <-> ( E. x ph /\ E. y A. x ( ph -> x = y ) ) )