Description: Uniqueness using implicit substitution. (Contributed by NM, 26-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eu4.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
Assertion | eu4 | |- ( E! x ph <-> ( E. x ph /\ A. x A. y ( ( ph /\ ps ) -> x = y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu4.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
2 | df-eu | |- ( E! x ph <-> ( E. x ph /\ E* x ph ) ) |
|
3 | 1 | mo4 | |- ( E* x ph <-> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |
4 | 3 | anbi2i | |- ( ( E. x ph /\ E* x ph ) <-> ( E. x ph /\ A. x A. y ( ( ph /\ ps ) -> x = y ) ) ) |
5 | 2 4 | bitri | |- ( E! x ph <-> ( E. x ph /\ A. x A. y ( ( ph /\ ps ) -> x = y ) ) ) |