Metamath Proof Explorer


Theorem eu4

Description: Uniqueness using implicit substitution. (Contributed by NM, 26-Jul-1995)

Ref Expression
Hypothesis eu4.1
|- ( x = y -> ( ph <-> ps ) )
Assertion eu4
|- ( E! x ph <-> ( E. x ph /\ A. x A. y ( ( ph /\ ps ) -> x = y ) ) )

Proof

Step Hyp Ref Expression
1 eu4.1
 |-  ( x = y -> ( ph <-> ps ) )
2 df-eu
 |-  ( E! x ph <-> ( E. x ph /\ E* x ph ) )
3 1 mo4
 |-  ( E* x ph <-> A. x A. y ( ( ph /\ ps ) -> x = y ) )
4 3 anbi2i
 |-  ( ( E. x ph /\ E* x ph ) <-> ( E. x ph /\ A. x A. y ( ( ph /\ ps ) -> x = y ) ) )
5 2 4 bitri
 |-  ( E! x ph <-> ( E. x ph /\ A. x A. y ( ( ph /\ ps ) -> x = y ) ) )