Description: One direction of eu6 needs fewer axioms. (Contributed by Wolf Lammen, 2-Mar-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | eu6im | |- ( E. y A. x ( ph <-> x = y ) -> E! x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsbim | |- ( E. y A. x ( x = y -> ph ) -> E. x ph ) |
|
2 | 1 | anim1i | |- ( ( E. y A. x ( x = y -> ph ) /\ E. z A. x ( ph -> x = z ) ) -> ( E. x ph /\ E. z A. x ( ph -> x = z ) ) ) |
3 | eu6lem | |- ( E. y A. x ( ph <-> x = y ) <-> ( E. y A. x ( x = y -> ph ) /\ E. z A. x ( ph -> x = z ) ) ) |
|
4 | eu3v | |- ( E! x ph <-> ( E. x ph /\ E. z A. x ( ph -> x = z ) ) ) |
|
5 | 2 3 4 | 3imtr4i | |- ( E. y A. x ( ph <-> x = y ) -> E! x ph ) |