Step |
Hyp |
Ref |
Expression |
1 |
|
19.42v |
|- ( E. z ( A. x ( ph <-> x = y ) /\ y = z ) <-> ( A. x ( ph <-> x = y ) /\ E. z y = z ) ) |
2 |
|
alsyl |
|- ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) -> A. x ( x = y -> x = z ) ) |
3 |
|
equvelv |
|- ( A. x ( x = y -> x = z ) <-> y = z ) |
4 |
2 3
|
sylib |
|- ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) -> y = z ) |
5 |
4
|
pm4.71i |
|- ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) <-> ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) /\ y = z ) ) |
6 |
|
albiim |
|- ( A. x ( ph <-> x = y ) <-> ( A. x ( ph -> x = y ) /\ A. x ( x = y -> ph ) ) ) |
7 |
6
|
biancomi |
|- ( A. x ( ph <-> x = y ) <-> ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = y ) ) ) |
8 |
|
equequ2 |
|- ( y = z -> ( x = y <-> x = z ) ) |
9 |
8
|
imbi2d |
|- ( y = z -> ( ( ph -> x = y ) <-> ( ph -> x = z ) ) ) |
10 |
9
|
albidv |
|- ( y = z -> ( A. x ( ph -> x = y ) <-> A. x ( ph -> x = z ) ) ) |
11 |
10
|
anbi2d |
|- ( y = z -> ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = y ) ) <-> ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) ) ) |
12 |
7 11
|
bitrid |
|- ( y = z -> ( A. x ( ph <-> x = y ) <-> ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) ) ) |
13 |
12
|
pm5.32ri |
|- ( ( A. x ( ph <-> x = y ) /\ y = z ) <-> ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) /\ y = z ) ) |
14 |
5 13
|
bitr4i |
|- ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) <-> ( A. x ( ph <-> x = y ) /\ y = z ) ) |
15 |
14
|
exbii |
|- ( E. z ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) <-> E. z ( A. x ( ph <-> x = y ) /\ y = z ) ) |
16 |
|
ax6evr |
|- E. z y = z |
17 |
16
|
biantru |
|- ( A. x ( ph <-> x = y ) <-> ( A. x ( ph <-> x = y ) /\ E. z y = z ) ) |
18 |
1 15 17
|
3bitr4ri |
|- ( A. x ( ph <-> x = y ) <-> E. z ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) ) |
19 |
18
|
exbii |
|- ( E. y A. x ( ph <-> x = y ) <-> E. y E. z ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) ) |
20 |
|
exdistrv |
|- ( E. y E. z ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) <-> ( E. y A. x ( x = y -> ph ) /\ E. z A. x ( ph -> x = z ) ) ) |
21 |
19 20
|
bitri |
|- ( E. y A. x ( ph <-> x = y ) <-> ( E. y A. x ( x = y -> ph ) /\ E. z A. x ( ph -> x = z ) ) ) |