Metamath Proof Explorer


Theorem euabsn

Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004)

Ref Expression
Assertion euabsn
|- ( E! x ph <-> E. x { x | ph } = { x } )

Proof

Step Hyp Ref Expression
1 euabsn2
 |-  ( E! x ph <-> E. y { x | ph } = { y } )
2 nfv
 |-  F/ y { x | ph } = { x }
3 nfab1
 |-  F/_ x { x | ph }
4 3 nfeq1
 |-  F/ x { x | ph } = { y }
5 sneq
 |-  ( x = y -> { x } = { y } )
6 5 eqeq2d
 |-  ( x = y -> ( { x | ph } = { x } <-> { x | ph } = { y } ) )
7 2 4 6 cbvexv1
 |-  ( E. x { x | ph } = { x } <-> E. y { x | ph } = { y } )
8 1 7 bitr4i
 |-  ( E! x ph <-> E. x { x | ph } = { x } )