Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | euabsn | |- ( E! x ph <-> E. x { x | ph } = { x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 | |- ( E! x ph <-> E. y { x | ph } = { y } ) |
|
| 2 | nfv | |- F/ y { x | ph } = { x } |
|
| 3 | nfab1 | |- F/_ x { x | ph } |
|
| 4 | 3 | nfeq1 | |- F/ x { x | ph } = { y } |
| 5 | sneq | |- ( x = y -> { x } = { y } ) |
|
| 6 | 5 | eqeq2d | |- ( x = y -> ( { x | ph } = { x } <-> { x | ph } = { y } ) ) |
| 7 | 2 4 6 | cbvexv1 | |- ( E. x { x | ph } = { x } <-> E. y { x | ph } = { y } ) |
| 8 | 1 7 | bitr4i | |- ( E! x ph <-> E. x { x | ph } = { x } ) |