Metamath Proof Explorer


Theorem euabsn2

Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion euabsn2
|- ( E! x ph <-> E. y { x | ph } = { y } )

Proof

Step Hyp Ref Expression
1 eu6
 |-  ( E! x ph <-> E. y A. x ( ph <-> x = y ) )
2 absn
 |-  ( { x | ph } = { y } <-> A. x ( ph <-> x = y ) )
3 2 exbii
 |-  ( E. y { x | ph } = { y } <-> E. y A. x ( ph <-> x = y ) )
4 1 3 bitr4i
 |-  ( E! x ph <-> E. y { x | ph } = { y } )