Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | euabsn2 | |- ( E! x ph <-> E. y { x | ph } = { y } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 | |- ( E! x ph <-> E. y A. x ( ph <-> x = y ) ) |
|
2 | absn | |- ( { x | ph } = { y } <-> A. x ( ph <-> x = y ) ) |
|
3 | 2 | exbii | |- ( E. y { x | ph } = { y } <-> E. y A. x ( ph <-> x = y ) ) |
4 | 1 3 | bitr4i | |- ( E! x ph <-> E. y { x | ph } = { y } ) |