| Step |
Hyp |
Ref |
Expression |
| 1 |
|
euex |
|- ( E! x ( ph /\ ps ) -> E. x ( ph /\ ps ) ) |
| 2 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
| 3 |
2
|
exlimiv |
|- ( E. x ( ph /\ ps ) -> ph ) |
| 4 |
1 3
|
syl |
|- ( E! x ( ph /\ ps ) -> ph ) |
| 5 |
|
ibar |
|- ( ph -> ( ps <-> ( ph /\ ps ) ) ) |
| 6 |
5
|
eubidv |
|- ( ph -> ( E! x ps <-> E! x ( ph /\ ps ) ) ) |
| 7 |
6
|
biimprcd |
|- ( E! x ( ph /\ ps ) -> ( ph -> E! x ps ) ) |
| 8 |
4 7
|
jcai |
|- ( E! x ( ph /\ ps ) -> ( ph /\ E! x ps ) ) |
| 9 |
6
|
biimpa |
|- ( ( ph /\ E! x ps ) -> E! x ( ph /\ ps ) ) |
| 10 |
8 9
|
impbii |
|- ( E! x ( ph /\ ps ) <-> ( ph /\ E! x ps ) ) |