Description: Equivalence theorem for the unique existential quantifier. Theorem *14.271 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011) Reduce dependencies on axioms. (Revised by BJ, 7-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | eubi | |- ( A. x ( ph <-> ps ) -> ( E! x ph <-> E! x ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi | |- ( A. x ( ph <-> ps ) -> ( E. x ph <-> E. x ps ) ) |
|
2 | mobi | |- ( A. x ( ph <-> ps ) -> ( E* x ph <-> E* x ps ) ) |
|
3 | 1 2 | anbi12d | |- ( A. x ( ph <-> ps ) -> ( ( E. x ph /\ E* x ph ) <-> ( E. x ps /\ E* x ps ) ) ) |
4 | df-eu | |- ( E! x ph <-> ( E. x ph /\ E* x ph ) ) |
|
5 | df-eu | |- ( E! x ps <-> ( E. x ps /\ E* x ps ) ) |
|
6 | 3 4 5 | 3bitr4g | |- ( A. x ( ph <-> ps ) -> ( E! x ph <-> E! x ps ) ) |