Metamath Proof Explorer


Theorem eubi

Description: Equivalence theorem for the unique existential quantifier. Theorem *14.271 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011) Reduce dependencies on axioms. (Revised by BJ, 7-Oct-2022)

Ref Expression
Assertion eubi
|- ( A. x ( ph <-> ps ) -> ( E! x ph <-> E! x ps ) )

Proof

Step Hyp Ref Expression
1 exbi
 |-  ( A. x ( ph <-> ps ) -> ( E. x ph <-> E. x ps ) )
2 mobi
 |-  ( A. x ( ph <-> ps ) -> ( E* x ph <-> E* x ps ) )
3 1 2 anbi12d
 |-  ( A. x ( ph <-> ps ) -> ( ( E. x ph /\ E* x ph ) <-> ( E. x ps /\ E* x ps ) ) )
4 df-eu
 |-  ( E! x ph <-> ( E. x ph /\ E* x ph ) )
5 df-eu
 |-  ( E! x ps <-> ( E. x ps /\ E* x ps ) )
6 3 4 5 3bitr4g
 |-  ( A. x ( ph <-> ps ) -> ( E! x ph <-> E! x ps ) )