Metamath Proof Explorer


Theorem eubid

Description: Formula-building rule for the unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994) (Proof shortened by Wolf Lammen, 19-Feb-2023)

Ref Expression
Hypotheses eubid.1
|- F/ x ph
eubid.2
|- ( ph -> ( ps <-> ch ) )
Assertion eubid
|- ( ph -> ( E! x ps <-> E! x ch ) )

Proof

Step Hyp Ref Expression
1 eubid.1
 |-  F/ x ph
2 eubid.2
 |-  ( ph -> ( ps <-> ch ) )
3 1 2 alrimi
 |-  ( ph -> A. x ( ps <-> ch ) )
4 eubi
 |-  ( A. x ( ps <-> ch ) -> ( E! x ps <-> E! x ch ) )
5 3 4 syl
 |-  ( ph -> ( E! x ps <-> E! x ch ) )