Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eubidv.1 | |- ( ph -> ( ps <-> ch ) ) |
|
Assertion | eubidv | |- ( ph -> ( E! x ps <-> E! x ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubidv.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | 1 | alrimiv | |- ( ph -> A. x ( ps <-> ch ) ) |
3 | eubi | |- ( A. x ( ps <-> ch ) -> ( E! x ps <-> E! x ch ) ) |
|
4 | 2 3 | syl | |- ( ph -> ( E! x ps <-> E! x ch ) ) |