| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eucalgval.1 |
|- E = ( x e. NN0 , y e. NN0 |-> if ( y = 0 , <. x , y >. , <. y , ( x mod y ) >. ) ) |
| 2 |
|
eucalg.2 |
|- R = seq 0 ( ( E o. 1st ) , ( NN0 X. { A } ) ) |
| 3 |
|
eucalgcvga.3 |
|- N = ( 2nd ` A ) |
| 4 |
|
xp2nd |
|- ( A e. ( NN0 X. NN0 ) -> ( 2nd ` A ) e. NN0 ) |
| 5 |
3 4
|
eqeltrid |
|- ( A e. ( NN0 X. NN0 ) -> N e. NN0 ) |
| 6 |
|
eluznn0 |
|- ( ( N e. NN0 /\ K e. ( ZZ>= ` N ) ) -> K e. NN0 ) |
| 7 |
5 6
|
sylan |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> K e. NN0 ) |
| 8 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 9 |
|
0zd |
|- ( A e. ( NN0 X. NN0 ) -> 0 e. ZZ ) |
| 10 |
|
id |
|- ( A e. ( NN0 X. NN0 ) -> A e. ( NN0 X. NN0 ) ) |
| 11 |
1
|
eucalgf |
|- E : ( NN0 X. NN0 ) --> ( NN0 X. NN0 ) |
| 12 |
11
|
a1i |
|- ( A e. ( NN0 X. NN0 ) -> E : ( NN0 X. NN0 ) --> ( NN0 X. NN0 ) ) |
| 13 |
8 2 9 10 12
|
algrf |
|- ( A e. ( NN0 X. NN0 ) -> R : NN0 --> ( NN0 X. NN0 ) ) |
| 14 |
13
|
ffvelcdmda |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. NN0 ) -> ( R ` K ) e. ( NN0 X. NN0 ) ) |
| 15 |
7 14
|
syldan |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> ( R ` K ) e. ( NN0 X. NN0 ) ) |
| 16 |
15
|
fvresd |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( R ` K ) ) = ( 2nd ` ( R ` K ) ) ) |
| 17 |
|
simpl |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> A e. ( NN0 X. NN0 ) ) |
| 18 |
|
fvres |
|- ( A e. ( NN0 X. NN0 ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) = ( 2nd ` A ) ) |
| 19 |
18 3
|
eqtr4di |
|- ( A e. ( NN0 X. NN0 ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) = N ) |
| 20 |
19
|
fveq2d |
|- ( A e. ( NN0 X. NN0 ) -> ( ZZ>= ` ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) ) = ( ZZ>= ` N ) ) |
| 21 |
20
|
eleq2d |
|- ( A e. ( NN0 X. NN0 ) -> ( K e. ( ZZ>= ` ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) ) <-> K e. ( ZZ>= ` N ) ) ) |
| 22 |
21
|
biimpar |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> K e. ( ZZ>= ` ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) ) ) |
| 23 |
|
f2ndres |
|- ( 2nd |` ( NN0 X. NN0 ) ) : ( NN0 X. NN0 ) --> NN0 |
| 24 |
1
|
eucalglt |
|- ( z e. ( NN0 X. NN0 ) -> ( ( 2nd ` ( E ` z ) ) =/= 0 -> ( 2nd ` ( E ` z ) ) < ( 2nd ` z ) ) ) |
| 25 |
11
|
ffvelcdmi |
|- ( z e. ( NN0 X. NN0 ) -> ( E ` z ) e. ( NN0 X. NN0 ) ) |
| 26 |
25
|
fvresd |
|- ( z e. ( NN0 X. NN0 ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) = ( 2nd ` ( E ` z ) ) ) |
| 27 |
26
|
neeq1d |
|- ( z e. ( NN0 X. NN0 ) -> ( ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) =/= 0 <-> ( 2nd ` ( E ` z ) ) =/= 0 ) ) |
| 28 |
|
fvres |
|- ( z e. ( NN0 X. NN0 ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` z ) = ( 2nd ` z ) ) |
| 29 |
26 28
|
breq12d |
|- ( z e. ( NN0 X. NN0 ) -> ( ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) < ( ( 2nd |` ( NN0 X. NN0 ) ) ` z ) <-> ( 2nd ` ( E ` z ) ) < ( 2nd ` z ) ) ) |
| 30 |
24 27 29
|
3imtr4d |
|- ( z e. ( NN0 X. NN0 ) -> ( ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) =/= 0 -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) < ( ( 2nd |` ( NN0 X. NN0 ) ) ` z ) ) ) |
| 31 |
|
eqid |
|- ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) = ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) |
| 32 |
11 2 23 30 31
|
algcvga |
|- ( A e. ( NN0 X. NN0 ) -> ( K e. ( ZZ>= ` ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( R ` K ) ) = 0 ) ) |
| 33 |
17 22 32
|
sylc |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( R ` K ) ) = 0 ) |
| 34 |
16 33
|
eqtr3d |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> ( 2nd ` ( R ` K ) ) = 0 ) |
| 35 |
34
|
ex |
|- ( A e. ( NN0 X. NN0 ) -> ( K e. ( ZZ>= ` N ) -> ( 2nd ` ( R ` K ) ) = 0 ) ) |