Step |
Hyp |
Ref |
Expression |
1 |
|
eucalgval.1 |
|- E = ( x e. NN0 , y e. NN0 |-> if ( y = 0 , <. x , y >. , <. y , ( x mod y ) >. ) ) |
2 |
|
eucalg.2 |
|- R = seq 0 ( ( E o. 1st ) , ( NN0 X. { A } ) ) |
3 |
|
eucalgcvga.3 |
|- N = ( 2nd ` A ) |
4 |
|
xp2nd |
|- ( A e. ( NN0 X. NN0 ) -> ( 2nd ` A ) e. NN0 ) |
5 |
3 4
|
eqeltrid |
|- ( A e. ( NN0 X. NN0 ) -> N e. NN0 ) |
6 |
|
eluznn0 |
|- ( ( N e. NN0 /\ K e. ( ZZ>= ` N ) ) -> K e. NN0 ) |
7 |
5 6
|
sylan |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> K e. NN0 ) |
8 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
9 |
|
0zd |
|- ( A e. ( NN0 X. NN0 ) -> 0 e. ZZ ) |
10 |
|
id |
|- ( A e. ( NN0 X. NN0 ) -> A e. ( NN0 X. NN0 ) ) |
11 |
1
|
eucalgf |
|- E : ( NN0 X. NN0 ) --> ( NN0 X. NN0 ) |
12 |
11
|
a1i |
|- ( A e. ( NN0 X. NN0 ) -> E : ( NN0 X. NN0 ) --> ( NN0 X. NN0 ) ) |
13 |
8 2 9 10 12
|
algrf |
|- ( A e. ( NN0 X. NN0 ) -> R : NN0 --> ( NN0 X. NN0 ) ) |
14 |
13
|
ffvelrnda |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. NN0 ) -> ( R ` K ) e. ( NN0 X. NN0 ) ) |
15 |
7 14
|
syldan |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> ( R ` K ) e. ( NN0 X. NN0 ) ) |
16 |
15
|
fvresd |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( R ` K ) ) = ( 2nd ` ( R ` K ) ) ) |
17 |
|
simpl |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> A e. ( NN0 X. NN0 ) ) |
18 |
|
fvres |
|- ( A e. ( NN0 X. NN0 ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) = ( 2nd ` A ) ) |
19 |
18 3
|
eqtr4di |
|- ( A e. ( NN0 X. NN0 ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) = N ) |
20 |
19
|
fveq2d |
|- ( A e. ( NN0 X. NN0 ) -> ( ZZ>= ` ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) ) = ( ZZ>= ` N ) ) |
21 |
20
|
eleq2d |
|- ( A e. ( NN0 X. NN0 ) -> ( K e. ( ZZ>= ` ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) ) <-> K e. ( ZZ>= ` N ) ) ) |
22 |
21
|
biimpar |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> K e. ( ZZ>= ` ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) ) ) |
23 |
|
f2ndres |
|- ( 2nd |` ( NN0 X. NN0 ) ) : ( NN0 X. NN0 ) --> NN0 |
24 |
1
|
eucalglt |
|- ( z e. ( NN0 X. NN0 ) -> ( ( 2nd ` ( E ` z ) ) =/= 0 -> ( 2nd ` ( E ` z ) ) < ( 2nd ` z ) ) ) |
25 |
11
|
ffvelrni |
|- ( z e. ( NN0 X. NN0 ) -> ( E ` z ) e. ( NN0 X. NN0 ) ) |
26 |
25
|
fvresd |
|- ( z e. ( NN0 X. NN0 ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) = ( 2nd ` ( E ` z ) ) ) |
27 |
26
|
neeq1d |
|- ( z e. ( NN0 X. NN0 ) -> ( ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) =/= 0 <-> ( 2nd ` ( E ` z ) ) =/= 0 ) ) |
28 |
|
fvres |
|- ( z e. ( NN0 X. NN0 ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` z ) = ( 2nd ` z ) ) |
29 |
26 28
|
breq12d |
|- ( z e. ( NN0 X. NN0 ) -> ( ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) < ( ( 2nd |` ( NN0 X. NN0 ) ) ` z ) <-> ( 2nd ` ( E ` z ) ) < ( 2nd ` z ) ) ) |
30 |
24 27 29
|
3imtr4d |
|- ( z e. ( NN0 X. NN0 ) -> ( ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) =/= 0 -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( E ` z ) ) < ( ( 2nd |` ( NN0 X. NN0 ) ) ` z ) ) ) |
31 |
|
eqid |
|- ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) = ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) |
32 |
11 2 23 30 31
|
algcvga |
|- ( A e. ( NN0 X. NN0 ) -> ( K e. ( ZZ>= ` ( ( 2nd |` ( NN0 X. NN0 ) ) ` A ) ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( R ` K ) ) = 0 ) ) |
33 |
17 22 32
|
sylc |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> ( ( 2nd |` ( NN0 X. NN0 ) ) ` ( R ` K ) ) = 0 ) |
34 |
16 33
|
eqtr3d |
|- ( ( A e. ( NN0 X. NN0 ) /\ K e. ( ZZ>= ` N ) ) -> ( 2nd ` ( R ` K ) ) = 0 ) |
35 |
34
|
ex |
|- ( A e. ( NN0 X. NN0 ) -> ( K e. ( ZZ>= ` N ) -> ( 2nd ` ( R ` K ) ) = 0 ) ) |