Step |
Hyp |
Ref |
Expression |
1 |
|
eucalgval.1 |
|- E = ( x e. NN0 , y e. NN0 |-> if ( y = 0 , <. x , y >. , <. y , ( x mod y ) >. ) ) |
2 |
|
simpr |
|- ( ( x = M /\ y = N ) -> y = N ) |
3 |
2
|
eqeq1d |
|- ( ( x = M /\ y = N ) -> ( y = 0 <-> N = 0 ) ) |
4 |
|
opeq12 |
|- ( ( x = M /\ y = N ) -> <. x , y >. = <. M , N >. ) |
5 |
|
oveq12 |
|- ( ( x = M /\ y = N ) -> ( x mod y ) = ( M mod N ) ) |
6 |
2 5
|
opeq12d |
|- ( ( x = M /\ y = N ) -> <. y , ( x mod y ) >. = <. N , ( M mod N ) >. ) |
7 |
3 4 6
|
ifbieq12d |
|- ( ( x = M /\ y = N ) -> if ( y = 0 , <. x , y >. , <. y , ( x mod y ) >. ) = if ( N = 0 , <. M , N >. , <. N , ( M mod N ) >. ) ) |
8 |
|
opex |
|- <. M , N >. e. _V |
9 |
|
opex |
|- <. N , ( M mod N ) >. e. _V |
10 |
8 9
|
ifex |
|- if ( N = 0 , <. M , N >. , <. N , ( M mod N ) >. ) e. _V |
11 |
7 1 10
|
ovmpoa |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M E N ) = if ( N = 0 , <. M , N >. , <. N , ( M mod N ) >. ) ) |