| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coprm |
|- ( ( P e. Prime /\ M e. ZZ ) -> ( -. P || M <-> ( P gcd M ) = 1 ) ) |
| 2 |
1
|
3adant3 |
|- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( -. P || M <-> ( P gcd M ) = 1 ) ) |
| 3 |
2
|
anbi2d |
|- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || ( M x. N ) /\ -. P || M ) <-> ( P || ( M x. N ) /\ ( P gcd M ) = 1 ) ) ) |
| 4 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 5 |
|
coprmdvds |
|- ( ( P e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || ( M x. N ) /\ ( P gcd M ) = 1 ) -> P || N ) ) |
| 6 |
4 5
|
syl3an1 |
|- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || ( M x. N ) /\ ( P gcd M ) = 1 ) -> P || N ) ) |
| 7 |
3 6
|
sylbid |
|- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || ( M x. N ) /\ -. P || M ) -> P || N ) ) |
| 8 |
7
|
expd |
|- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( P || ( M x. N ) -> ( -. P || M -> P || N ) ) ) |
| 9 |
|
df-or |
|- ( ( P || M \/ P || N ) <-> ( -. P || M -> P || N ) ) |
| 10 |
8 9
|
imbitrrdi |
|- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( P || ( M x. N ) -> ( P || M \/ P || N ) ) ) |
| 11 |
|
ordvdsmul |
|- ( ( P e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || M \/ P || N ) -> P || ( M x. N ) ) ) |
| 12 |
4 11
|
syl3an1 |
|- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || M \/ P || N ) -> P || ( M x. N ) ) ) |
| 13 |
10 12
|
impbid |
|- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( P || ( M x. N ) <-> ( P || M \/ P || N ) ) ) |