| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eucrct2eupth1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
eucrct2eupth1.i |
|- I = ( iEdg ` G ) |
| 3 |
|
eucrct2eupth1.d |
|- ( ph -> F ( EulerPaths ` G ) P ) |
| 4 |
|
eucrct2eupth1.c |
|- ( ph -> F ( Circuits ` G ) P ) |
| 5 |
|
eucrct2eupth1.s |
|- ( Vtx ` S ) = V |
| 6 |
|
eucrct2eupth1.g |
|- ( ph -> 0 < ( # ` F ) ) |
| 7 |
|
eucrct2eupth1.n |
|- ( ph -> N = ( ( # ` F ) - 1 ) ) |
| 8 |
|
eucrct2eupth1.e |
|- ( ph -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
| 9 |
|
eucrct2eupth1.h |
|- H = ( F prefix N ) |
| 10 |
|
eucrct2eupth1.q |
|- Q = ( P |` ( 0 ... N ) ) |
| 11 |
|
eupthiswlk |
|- ( F ( EulerPaths ` G ) P -> F ( Walks ` G ) P ) |
| 12 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
| 13 |
|
nn0z |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ZZ ) |
| 14 |
13
|
anim1i |
|- ( ( ( # ` F ) e. NN0 /\ 0 < ( # ` F ) ) -> ( ( # ` F ) e. ZZ /\ 0 < ( # ` F ) ) ) |
| 15 |
|
elnnz |
|- ( ( # ` F ) e. NN <-> ( ( # ` F ) e. ZZ /\ 0 < ( # ` F ) ) ) |
| 16 |
14 15
|
sylibr |
|- ( ( ( # ` F ) e. NN0 /\ 0 < ( # ` F ) ) -> ( # ` F ) e. NN ) |
| 17 |
16
|
ex |
|- ( ( # ` F ) e. NN0 -> ( 0 < ( # ` F ) -> ( # ` F ) e. NN ) ) |
| 18 |
3 11 12 17
|
4syl |
|- ( ph -> ( 0 < ( # ` F ) -> ( # ` F ) e. NN ) ) |
| 19 |
6 18
|
mpd |
|- ( ph -> ( # ` F ) e. NN ) |
| 20 |
|
fzo0end |
|- ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 21 |
19 20
|
syl |
|- ( ph -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 22 |
7 21
|
eqeltrd |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
| 23 |
1 2 3 22 8 9 10 5
|
eupthres |
|- ( ph -> H ( EulerPaths ` S ) Q ) |