Metamath Proof Explorer


Theorem euen1

Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion euen1
|- ( E! x ph <-> { x | ph } ~~ 1o )

Proof

Step Hyp Ref Expression
1 reuen1
 |-  ( E! x e. _V ph <-> { x e. _V | ph } ~~ 1o )
2 reuv
 |-  ( E! x e. _V ph <-> E! x ph )
3 rabab
 |-  { x e. _V | ph } = { x | ph }
4 3 breq1i
 |-  ( { x e. _V | ph } ~~ 1o <-> { x | ph } ~~ 1o )
5 1 2 4 3bitr3i
 |-  ( E! x ph <-> { x | ph } ~~ 1o )