Description: Two ways to express " A has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | euen1b | |- ( A ~~ 1o <-> E! x x e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euen1 | |- ( E! x x e. A <-> { x | x e. A } ~~ 1o ) |
|
| 2 | abid2 | |- { x | x e. A } = A |
|
| 3 | 2 | breq1i | |- ( { x | x e. A } ~~ 1o <-> A ~~ 1o ) |
| 4 | 1 3 | bitr2i | |- ( A ~~ 1o <-> E! x x e. A ) |