| Step |
Hyp |
Ref |
Expression |
| 1 |
|
euendfunc.f |
|- ( ph -> E! f f e. ( C Func C ) ) |
| 2 |
|
euendfunc.b |
|- B = ( Base ` C ) |
| 3 |
|
euendfunc.0 |
|- ( ph -> B =/= (/) ) |
| 4 |
|
n0 |
|- ( B =/= (/) <-> E. x x e. B ) |
| 5 |
3 4
|
sylib |
|- ( ph -> E. x x e. B ) |
| 6 |
|
eqid |
|- ( idFunc ` C ) = ( idFunc ` C ) |
| 7 |
|
eqid |
|- ( C DiagFunc C ) = ( C DiagFunc C ) |
| 8 |
1
|
adantr |
|- ( ( ph /\ x e. B ) -> E! f f e. ( C Func C ) ) |
| 9 |
|
euex |
|- ( E! f f e. ( C Func C ) -> E. f f e. ( C Func C ) ) |
| 10 |
8 9
|
syl |
|- ( ( ph /\ x e. B ) -> E. f f e. ( C Func C ) ) |
| 11 |
|
funcrcl |
|- ( f e. ( C Func C ) -> ( C e. Cat /\ C e. Cat ) ) |
| 12 |
11
|
simpld |
|- ( f e. ( C Func C ) -> C e. Cat ) |
| 13 |
12
|
exlimiv |
|- ( E. f f e. ( C Func C ) -> C e. Cat ) |
| 14 |
10 13
|
syl |
|- ( ( ph /\ x e. B ) -> C e. Cat ) |
| 15 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
| 16 |
|
eqid |
|- ( ( 1st ` ( C DiagFunc C ) ) ` x ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) |
| 17 |
6
|
idfucl |
|- ( C e. Cat -> ( idFunc ` C ) e. ( C Func C ) ) |
| 18 |
14 17
|
syl |
|- ( ( ph /\ x e. B ) -> ( idFunc ` C ) e. ( C Func C ) ) |
| 19 |
7 14 14 2 15 16
|
diag1cl |
|- ( ( ph /\ x e. B ) -> ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) |
| 20 |
|
eumo |
|- ( E! f f e. ( C Func C ) -> E* f f e. ( C Func C ) ) |
| 21 |
8 20
|
syl |
|- ( ( ph /\ x e. B ) -> E* f f e. ( C Func C ) ) |
| 22 |
|
eleq1w |
|- ( f = g -> ( f e. ( C Func C ) <-> g e. ( C Func C ) ) ) |
| 23 |
22
|
mo4 |
|- ( E* f f e. ( C Func C ) <-> A. f A. g ( ( f e. ( C Func C ) /\ g e. ( C Func C ) ) -> f = g ) ) |
| 24 |
21 23
|
sylib |
|- ( ( ph /\ x e. B ) -> A. f A. g ( ( f e. ( C Func C ) /\ g e. ( C Func C ) ) -> f = g ) ) |
| 25 |
|
fvex |
|- ( idFunc ` C ) e. _V |
| 26 |
|
fvex |
|- ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. _V |
| 27 |
|
simpl |
|- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> f = ( idFunc ` C ) ) |
| 28 |
27
|
eleq1d |
|- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> ( f e. ( C Func C ) <-> ( idFunc ` C ) e. ( C Func C ) ) ) |
| 29 |
|
simpr |
|- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) |
| 30 |
29
|
eleq1d |
|- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> ( g e. ( C Func C ) <-> ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) ) |
| 31 |
28 30
|
anbi12d |
|- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> ( ( f e. ( C Func C ) /\ g e. ( C Func C ) ) <-> ( ( idFunc ` C ) e. ( C Func C ) /\ ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) ) ) |
| 32 |
|
eqeq12 |
|- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> ( f = g <-> ( idFunc ` C ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) ) |
| 33 |
31 32
|
imbi12d |
|- ( ( f = ( idFunc ` C ) /\ g = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) -> ( ( ( f e. ( C Func C ) /\ g e. ( C Func C ) ) -> f = g ) <-> ( ( ( idFunc ` C ) e. ( C Func C ) /\ ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) -> ( idFunc ` C ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) ) ) |
| 34 |
33
|
spc2gv |
|- ( ( ( idFunc ` C ) e. _V /\ ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. _V ) -> ( A. f A. g ( ( f e. ( C Func C ) /\ g e. ( C Func C ) ) -> f = g ) -> ( ( ( idFunc ` C ) e. ( C Func C ) /\ ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) -> ( idFunc ` C ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) ) ) |
| 35 |
25 26 34
|
mp2an |
|- ( A. f A. g ( ( f e. ( C Func C ) /\ g e. ( C Func C ) ) -> f = g ) -> ( ( ( idFunc ` C ) e. ( C Func C ) /\ ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) -> ( idFunc ` C ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) ) |
| 36 |
24 35
|
syl |
|- ( ( ph /\ x e. B ) -> ( ( ( idFunc ` C ) e. ( C Func C ) /\ ( ( 1st ` ( C DiagFunc C ) ) ` x ) e. ( C Func C ) ) -> ( idFunc ` C ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) ) |
| 37 |
18 19 36
|
mp2and |
|- ( ( ph /\ x e. B ) -> ( idFunc ` C ) = ( ( 1st ` ( C DiagFunc C ) ) ` x ) ) |
| 38 |
6 7 14 2 15 16 37
|
idfudiag1 |
|- ( ( ph /\ x e. B ) -> C e. TermCat ) |
| 39 |
5 38
|
exlimddv |
|- ( ph -> C e. TermCat ) |