| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eueq2.1 |
|- A e. _V |
| 2 |
|
eueq2.2 |
|- B e. _V |
| 3 |
|
notnot |
|- ( ph -> -. -. ph ) |
| 4 |
1
|
eueqi |
|- E! x x = A |
| 5 |
|
euanv |
|- ( E! x ( ph /\ x = A ) <-> ( ph /\ E! x x = A ) ) |
| 6 |
5
|
biimpri |
|- ( ( ph /\ E! x x = A ) -> E! x ( ph /\ x = A ) ) |
| 7 |
4 6
|
mpan2 |
|- ( ph -> E! x ( ph /\ x = A ) ) |
| 8 |
|
euorv |
|- ( ( -. -. ph /\ E! x ( ph /\ x = A ) ) -> E! x ( -. ph \/ ( ph /\ x = A ) ) ) |
| 9 |
3 7 8
|
syl2anc |
|- ( ph -> E! x ( -. ph \/ ( ph /\ x = A ) ) ) |
| 10 |
|
orcom |
|- ( ( -. ph \/ ( ph /\ x = A ) ) <-> ( ( ph /\ x = A ) \/ -. ph ) ) |
| 11 |
3
|
bianfd |
|- ( ph -> ( -. ph <-> ( -. ph /\ x = B ) ) ) |
| 12 |
11
|
orbi2d |
|- ( ph -> ( ( ( ph /\ x = A ) \/ -. ph ) <-> ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
| 13 |
10 12
|
bitrid |
|- ( ph -> ( ( -. ph \/ ( ph /\ x = A ) ) <-> ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
| 14 |
13
|
eubidv |
|- ( ph -> ( E! x ( -. ph \/ ( ph /\ x = A ) ) <-> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
| 15 |
9 14
|
mpbid |
|- ( ph -> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) |
| 16 |
2
|
eueqi |
|- E! x x = B |
| 17 |
|
euanv |
|- ( E! x ( -. ph /\ x = B ) <-> ( -. ph /\ E! x x = B ) ) |
| 18 |
17
|
biimpri |
|- ( ( -. ph /\ E! x x = B ) -> E! x ( -. ph /\ x = B ) ) |
| 19 |
16 18
|
mpan2 |
|- ( -. ph -> E! x ( -. ph /\ x = B ) ) |
| 20 |
|
euorv |
|- ( ( -. ph /\ E! x ( -. ph /\ x = B ) ) -> E! x ( ph \/ ( -. ph /\ x = B ) ) ) |
| 21 |
19 20
|
mpdan |
|- ( -. ph -> E! x ( ph \/ ( -. ph /\ x = B ) ) ) |
| 22 |
|
id |
|- ( -. ph -> -. ph ) |
| 23 |
22
|
bianfd |
|- ( -. ph -> ( ph <-> ( ph /\ x = A ) ) ) |
| 24 |
23
|
orbi1d |
|- ( -. ph -> ( ( ph \/ ( -. ph /\ x = B ) ) <-> ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
| 25 |
24
|
eubidv |
|- ( -. ph -> ( E! x ( ph \/ ( -. ph /\ x = B ) ) <-> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
| 26 |
21 25
|
mpbid |
|- ( -. ph -> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) |
| 27 |
15 26
|
pm2.61i |
|- E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) |