Step |
Hyp |
Ref |
Expression |
1 |
|
eueq2.1 |
|- A e. _V |
2 |
|
eueq2.2 |
|- B e. _V |
3 |
|
notnot |
|- ( ph -> -. -. ph ) |
4 |
1
|
eueqi |
|- E! x x = A |
5 |
|
euanv |
|- ( E! x ( ph /\ x = A ) <-> ( ph /\ E! x x = A ) ) |
6 |
5
|
biimpri |
|- ( ( ph /\ E! x x = A ) -> E! x ( ph /\ x = A ) ) |
7 |
4 6
|
mpan2 |
|- ( ph -> E! x ( ph /\ x = A ) ) |
8 |
|
euorv |
|- ( ( -. -. ph /\ E! x ( ph /\ x = A ) ) -> E! x ( -. ph \/ ( ph /\ x = A ) ) ) |
9 |
3 7 8
|
syl2anc |
|- ( ph -> E! x ( -. ph \/ ( ph /\ x = A ) ) ) |
10 |
|
orcom |
|- ( ( -. ph \/ ( ph /\ x = A ) ) <-> ( ( ph /\ x = A ) \/ -. ph ) ) |
11 |
3
|
bianfd |
|- ( ph -> ( -. ph <-> ( -. ph /\ x = B ) ) ) |
12 |
11
|
orbi2d |
|- ( ph -> ( ( ( ph /\ x = A ) \/ -. ph ) <-> ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
13 |
10 12
|
bitrid |
|- ( ph -> ( ( -. ph \/ ( ph /\ x = A ) ) <-> ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
14 |
13
|
eubidv |
|- ( ph -> ( E! x ( -. ph \/ ( ph /\ x = A ) ) <-> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
15 |
9 14
|
mpbid |
|- ( ph -> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) |
16 |
2
|
eueqi |
|- E! x x = B |
17 |
|
euanv |
|- ( E! x ( -. ph /\ x = B ) <-> ( -. ph /\ E! x x = B ) ) |
18 |
17
|
biimpri |
|- ( ( -. ph /\ E! x x = B ) -> E! x ( -. ph /\ x = B ) ) |
19 |
16 18
|
mpan2 |
|- ( -. ph -> E! x ( -. ph /\ x = B ) ) |
20 |
|
euorv |
|- ( ( -. ph /\ E! x ( -. ph /\ x = B ) ) -> E! x ( ph \/ ( -. ph /\ x = B ) ) ) |
21 |
19 20
|
mpdan |
|- ( -. ph -> E! x ( ph \/ ( -. ph /\ x = B ) ) ) |
22 |
|
id |
|- ( -. ph -> -. ph ) |
23 |
22
|
bianfd |
|- ( -. ph -> ( ph <-> ( ph /\ x = A ) ) ) |
24 |
23
|
orbi1d |
|- ( -. ph -> ( ( ph \/ ( -. ph /\ x = B ) ) <-> ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
25 |
24
|
eubidv |
|- ( -. ph -> ( E! x ( ph \/ ( -. ph /\ x = B ) ) <-> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
26 |
21 25
|
mpbid |
|- ( -. ph -> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) |
27 |
15 26
|
pm2.61i |
|- E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) |