| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eueq3.1 |  |-  A e. _V | 
						
							| 2 |  | eueq3.2 |  |-  B e. _V | 
						
							| 3 |  | eueq3.3 |  |-  C e. _V | 
						
							| 4 |  | eueq3.4 |  |-  -. ( ph /\ ps ) | 
						
							| 5 | 1 | eueqi |  |-  E! x x = A | 
						
							| 6 |  | ibar |  |-  ( ph -> ( x = A <-> ( ph /\ x = A ) ) ) | 
						
							| 7 |  | pm2.45 |  |-  ( -. ( ph \/ ps ) -> -. ph ) | 
						
							| 8 | 4 | imnani |  |-  ( ph -> -. ps ) | 
						
							| 9 | 8 | con2i |  |-  ( ps -> -. ph ) | 
						
							| 10 | 7 9 | jaoi |  |-  ( ( -. ( ph \/ ps ) \/ ps ) -> -. ph ) | 
						
							| 11 | 10 | con2i |  |-  ( ph -> -. ( -. ( ph \/ ps ) \/ ps ) ) | 
						
							| 12 | 7 | con2i |  |-  ( ph -> -. -. ( ph \/ ps ) ) | 
						
							| 13 | 12 | bianfd |  |-  ( ph -> ( -. ( ph \/ ps ) <-> ( -. ( ph \/ ps ) /\ x = B ) ) ) | 
						
							| 14 | 8 | bianfd |  |-  ( ph -> ( ps <-> ( ps /\ x = C ) ) ) | 
						
							| 15 | 13 14 | orbi12d |  |-  ( ph -> ( ( -. ( ph \/ ps ) \/ ps ) <-> ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 16 | 11 15 | mtbid |  |-  ( ph -> -. ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) | 
						
							| 17 |  | biorf |  |-  ( -. ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> ( ( ph /\ x = A ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> ( ( ph /\ x = A ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) ) | 
						
							| 19 | 6 18 | bitrd |  |-  ( ph -> ( x = A <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) ) | 
						
							| 20 |  | 3orrot |  |-  ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) \/ ( ph /\ x = A ) ) ) | 
						
							| 21 |  | df-3or |  |-  ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) \/ ( ph /\ x = A ) ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) | 
						
							| 22 | 20 21 | bitri |  |-  ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) | 
						
							| 23 | 19 22 | bitr4di |  |-  ( ph -> ( x = A <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 24 | 23 | eubidv |  |-  ( ph -> ( E! x x = A <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 25 | 5 24 | mpbii |  |-  ( ph -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) | 
						
							| 26 | 3 | eueqi |  |-  E! x x = C | 
						
							| 27 |  | ibar |  |-  ( ps -> ( x = C <-> ( ps /\ x = C ) ) ) | 
						
							| 28 | 8 | adantr |  |-  ( ( ph /\ x = A ) -> -. ps ) | 
						
							| 29 |  | pm2.46 |  |-  ( -. ( ph \/ ps ) -> -. ps ) | 
						
							| 30 | 29 | adantr |  |-  ( ( -. ( ph \/ ps ) /\ x = B ) -> -. ps ) | 
						
							| 31 | 28 30 | jaoi |  |-  ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) -> -. ps ) | 
						
							| 32 | 31 | con2i |  |-  ( ps -> -. ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) | 
						
							| 33 |  | biorf |  |-  ( -. ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) -> ( ( ps /\ x = C ) <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ps -> ( ( ps /\ x = C ) <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 35 | 27 34 | bitrd |  |-  ( ps -> ( x = C <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 36 |  | df-3or |  |-  ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) | 
						
							| 37 | 35 36 | bitr4di |  |-  ( ps -> ( x = C <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 38 | 37 | eubidv |  |-  ( ps -> ( E! x x = C <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 39 | 26 38 | mpbii |  |-  ( ps -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) | 
						
							| 40 | 2 | eueqi |  |-  E! x x = B | 
						
							| 41 |  | ibar |  |-  ( -. ( ph \/ ps ) -> ( x = B <-> ( -. ( ph \/ ps ) /\ x = B ) ) ) | 
						
							| 42 |  | simpl |  |-  ( ( ph /\ x = A ) -> ph ) | 
						
							| 43 |  | simpl |  |-  ( ( ps /\ x = C ) -> ps ) | 
						
							| 44 | 42 43 | orim12i |  |-  ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) -> ( ph \/ ps ) ) | 
						
							| 45 |  | biorf |  |-  ( -. ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) -> ( ( -. ( ph \/ ps ) /\ x = B ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) ) | 
						
							| 46 | 44 45 | nsyl5 |  |-  ( -. ( ph \/ ps ) -> ( ( -. ( ph \/ ps ) /\ x = B ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) ) | 
						
							| 47 | 41 46 | bitrd |  |-  ( -. ( ph \/ ps ) -> ( x = B <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) ) | 
						
							| 48 |  | 3orcomb |  |-  ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ph /\ x = A ) \/ ( ps /\ x = C ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) | 
						
							| 49 |  | df-3or |  |-  ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) | 
						
							| 50 | 48 49 | bitri |  |-  ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) | 
						
							| 51 | 47 50 | bitr4di |  |-  ( -. ( ph \/ ps ) -> ( x = B <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 52 | 51 | eubidv |  |-  ( -. ( ph \/ ps ) -> ( E! x x = B <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) | 
						
							| 53 | 40 52 | mpbii |  |-  ( -. ( ph \/ ps ) -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) | 
						
							| 54 | 25 39 53 | ecase3 |  |-  E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) |