Step |
Hyp |
Ref |
Expression |
1 |
|
eueq3.1 |
|- A e. _V |
2 |
|
eueq3.2 |
|- B e. _V |
3 |
|
eueq3.3 |
|- C e. _V |
4 |
|
eueq3.4 |
|- -. ( ph /\ ps ) |
5 |
1
|
eueqi |
|- E! x x = A |
6 |
|
ibar |
|- ( ph -> ( x = A <-> ( ph /\ x = A ) ) ) |
7 |
|
pm2.45 |
|- ( -. ( ph \/ ps ) -> -. ph ) |
8 |
4
|
imnani |
|- ( ph -> -. ps ) |
9 |
8
|
con2i |
|- ( ps -> -. ph ) |
10 |
7 9
|
jaoi |
|- ( ( -. ( ph \/ ps ) \/ ps ) -> -. ph ) |
11 |
10
|
con2i |
|- ( ph -> -. ( -. ( ph \/ ps ) \/ ps ) ) |
12 |
7
|
con2i |
|- ( ph -> -. -. ( ph \/ ps ) ) |
13 |
12
|
bianfd |
|- ( ph -> ( -. ( ph \/ ps ) <-> ( -. ( ph \/ ps ) /\ x = B ) ) ) |
14 |
8
|
bianfd |
|- ( ph -> ( ps <-> ( ps /\ x = C ) ) ) |
15 |
13 14
|
orbi12d |
|- ( ph -> ( ( -. ( ph \/ ps ) \/ ps ) <-> ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
16 |
11 15
|
mtbid |
|- ( ph -> -. ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
17 |
|
biorf |
|- ( -. ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> ( ( ph /\ x = A ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) ) |
18 |
16 17
|
syl |
|- ( ph -> ( ( ph /\ x = A ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) ) |
19 |
6 18
|
bitrd |
|- ( ph -> ( x = A <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) ) |
20 |
|
3orrot |
|- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) \/ ( ph /\ x = A ) ) ) |
21 |
|
df-3or |
|- ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) \/ ( ph /\ x = A ) ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) |
22 |
20 21
|
bitri |
|- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) |
23 |
19 22
|
bitr4di |
|- ( ph -> ( x = A <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
24 |
23
|
eubidv |
|- ( ph -> ( E! x x = A <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
25 |
5 24
|
mpbii |
|- ( ph -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
26 |
3
|
eueqi |
|- E! x x = C |
27 |
|
ibar |
|- ( ps -> ( x = C <-> ( ps /\ x = C ) ) ) |
28 |
8
|
adantr |
|- ( ( ph /\ x = A ) -> -. ps ) |
29 |
|
pm2.46 |
|- ( -. ( ph \/ ps ) -> -. ps ) |
30 |
29
|
adantr |
|- ( ( -. ( ph \/ ps ) /\ x = B ) -> -. ps ) |
31 |
28 30
|
jaoi |
|- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) -> -. ps ) |
32 |
31
|
con2i |
|- ( ps -> -. ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) |
33 |
|
biorf |
|- ( -. ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) -> ( ( ps /\ x = C ) <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) ) |
34 |
32 33
|
syl |
|- ( ps -> ( ( ps /\ x = C ) <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) ) |
35 |
27 34
|
bitrd |
|- ( ps -> ( x = C <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) ) |
36 |
|
df-3or |
|- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) |
37 |
35 36
|
bitr4di |
|- ( ps -> ( x = C <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
38 |
37
|
eubidv |
|- ( ps -> ( E! x x = C <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
39 |
26 38
|
mpbii |
|- ( ps -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
40 |
2
|
eueqi |
|- E! x x = B |
41 |
|
ibar |
|- ( -. ( ph \/ ps ) -> ( x = B <-> ( -. ( ph \/ ps ) /\ x = B ) ) ) |
42 |
|
simpl |
|- ( ( ph /\ x = A ) -> ph ) |
43 |
|
simpl |
|- ( ( ps /\ x = C ) -> ps ) |
44 |
42 43
|
orim12i |
|- ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) -> ( ph \/ ps ) ) |
45 |
|
biorf |
|- ( -. ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) -> ( ( -. ( ph \/ ps ) /\ x = B ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) ) |
46 |
44 45
|
nsyl5 |
|- ( -. ( ph \/ ps ) -> ( ( -. ( ph \/ ps ) /\ x = B ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) ) |
47 |
41 46
|
bitrd |
|- ( -. ( ph \/ ps ) -> ( x = B <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) ) |
48 |
|
3orcomb |
|- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ph /\ x = A ) \/ ( ps /\ x = C ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) |
49 |
|
df-3or |
|- ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) |
50 |
48 49
|
bitri |
|- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) |
51 |
47 50
|
bitr4di |
|- ( -. ( ph \/ ps ) -> ( x = B <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
52 |
51
|
eubidv |
|- ( -. ( ph \/ ps ) -> ( E! x x = B <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
53 |
40 52
|
mpbii |
|- ( -. ( ph \/ ps ) -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
54 |
25 39 53
|
ecase3 |
|- E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) |