Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993) (Proof shortened by Andrew Salmon, 9-Jul-2011) (Proof shortened by Wolf Lammen, 4-Dec-2018) (Proof shortened by BJ, 7-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | euex | |- ( E! x ph -> E. x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu | |- ( E! x ph <-> ( E. x ph /\ E* x ph ) ) |
|
2 | 1 | simplbi | |- ( E! x ph -> E. x ph ) |