| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eufnfv.1 |  |-  A e. _V | 
						
							| 2 |  | eufnfv.2 |  |-  B e. _V | 
						
							| 3 | 1 | mptex |  |-  ( x e. A |-> B ) e. _V | 
						
							| 4 |  | eqeq2 |  |-  ( z = ( x e. A |-> B ) -> ( f = z <-> f = ( x e. A |-> B ) ) ) | 
						
							| 5 | 4 | bibi2d |  |-  ( z = ( x e. A |-> B ) -> ( ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) <-> ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = ( x e. A |-> B ) ) ) ) | 
						
							| 6 | 5 | albidv |  |-  ( z = ( x e. A |-> B ) -> ( A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) <-> A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = ( x e. A |-> B ) ) ) ) | 
						
							| 7 | 3 6 | spcev |  |-  ( A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = ( x e. A |-> B ) ) -> E. z A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) ) | 
						
							| 8 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 9 | 2 8 | fnmpti |  |-  ( x e. A |-> B ) Fn A | 
						
							| 10 |  | fneq1 |  |-  ( f = ( x e. A |-> B ) -> ( f Fn A <-> ( x e. A |-> B ) Fn A ) ) | 
						
							| 11 | 9 10 | mpbiri |  |-  ( f = ( x e. A |-> B ) -> f Fn A ) | 
						
							| 12 | 11 | pm4.71ri |  |-  ( f = ( x e. A |-> B ) <-> ( f Fn A /\ f = ( x e. A |-> B ) ) ) | 
						
							| 13 |  | dffn5 |  |-  ( f Fn A <-> f = ( x e. A |-> ( f ` x ) ) ) | 
						
							| 14 |  | eqeq1 |  |-  ( f = ( x e. A |-> ( f ` x ) ) -> ( f = ( x e. A |-> B ) <-> ( x e. A |-> ( f ` x ) ) = ( x e. A |-> B ) ) ) | 
						
							| 15 | 13 14 | sylbi |  |-  ( f Fn A -> ( f = ( x e. A |-> B ) <-> ( x e. A |-> ( f ` x ) ) = ( x e. A |-> B ) ) ) | 
						
							| 16 |  | fvex |  |-  ( f ` x ) e. _V | 
						
							| 17 | 16 | rgenw |  |-  A. x e. A ( f ` x ) e. _V | 
						
							| 18 |  | mpteqb |  |-  ( A. x e. A ( f ` x ) e. _V -> ( ( x e. A |-> ( f ` x ) ) = ( x e. A |-> B ) <-> A. x e. A ( f ` x ) = B ) ) | 
						
							| 19 | 17 18 | ax-mp |  |-  ( ( x e. A |-> ( f ` x ) ) = ( x e. A |-> B ) <-> A. x e. A ( f ` x ) = B ) | 
						
							| 20 | 15 19 | bitrdi |  |-  ( f Fn A -> ( f = ( x e. A |-> B ) <-> A. x e. A ( f ` x ) = B ) ) | 
						
							| 21 | 20 | pm5.32i |  |-  ( ( f Fn A /\ f = ( x e. A |-> B ) ) <-> ( f Fn A /\ A. x e. A ( f ` x ) = B ) ) | 
						
							| 22 | 12 21 | bitr2i |  |-  ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = ( x e. A |-> B ) ) | 
						
							| 23 | 7 22 | mpg |  |-  E. z A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) | 
						
							| 24 |  | eu6 |  |-  ( E! f ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> E. z A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) ) | 
						
							| 25 | 23 24 | mpbir |  |-  E! f ( f Fn A /\ A. x e. A ( f ` x ) = B ) |