Description: There is exactly one function into a singleton, assuming ax-rep . See eufsn2 for different axiom requirements. If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)
|- ( ph -> B e. W )
|- ( ph -> A e. V )
|- ( ph -> E! f f : A --> { B } )
|- ( A X. { B } ) = ( x e. A |-> B )
|- ( A e. V -> ( x e. A |-> B ) e. _V )
|- ( A e. V -> ( A X. { B } ) e. _V )
|- ( ph -> ( A X. { B } ) e. _V )