Description: There is exactly one function into a singleton, assuming ax-pow and ax-un . Variant of eufsn . If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eufsn.1 | |- ( ph -> B e. W ) | |
| eufsn.2 | |- ( ph -> A e. V ) | ||
| Assertion | eufsn2 | |- ( ph -> E! f f : A --> { B } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eufsn.1 | |- ( ph -> B e. W ) | |
| 2 | eufsn.2 | |- ( ph -> A e. V ) | |
| 3 | snex |  |-  { B } e. _V | |
| 4 | xpexg |  |-  ( ( A e. V /\ { B } e. _V ) -> ( A X. { B } ) e. _V ) | |
| 5 | 2 3 4 | sylancl |  |-  ( ph -> ( A X. { B } ) e. _V ) | 
| 6 | 1 5 | eufsnlem |  |-  ( ph -> E! f f : A --> { B } ) |