Metamath Proof Explorer


Theorem eufsn2

Description: There is exactly one function into a singleton, assuming ax-pow and ax-un . Variant of eufsn . If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypotheses eufsn.1
|- ( ph -> B e. W )
eufsn.2
|- ( ph -> A e. V )
Assertion eufsn2
|- ( ph -> E! f f : A --> { B } )

Proof

Step Hyp Ref Expression
1 eufsn.1
 |-  ( ph -> B e. W )
2 eufsn.2
 |-  ( ph -> A e. V )
3 snex
 |-  { B } e. _V
4 xpexg
 |-  ( ( A e. V /\ { B } e. _V ) -> ( A X. { B } ) e. _V )
5 2 3 4 sylancl
 |-  ( ph -> ( A X. { B } ) e. _V )
6 1 5 eufsnlem
 |-  ( ph -> E! f f : A --> { B } )