Description: There is exactly one function into a singleton, assuming ax-pow and ax-un . Variant of eufsn . If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eufsn.1 | |- ( ph -> B e. W ) |
|
eufsn.2 | |- ( ph -> A e. V ) |
||
Assertion | eufsn2 | |- ( ph -> E! f f : A --> { B } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eufsn.1 | |- ( ph -> B e. W ) |
|
2 | eufsn.2 | |- ( ph -> A e. V ) |
|
3 | snex | |- { B } e. _V |
|
4 | xpexg | |- ( ( A e. V /\ { B } e. _V ) -> ( A X. { B } ) e. _V ) |
|
5 | 2 3 4 | sylancl | |- ( ph -> ( A X. { B } ) e. _V ) |
6 | 1 5 | eufsnlem | |- ( ph -> E! f f : A --> { B } ) |