Metamath Proof Explorer


Theorem euim

Description: Add unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005) (Proof shortened by Andrew Salmon, 14-Jun-2011) (Proof shortened by Wolf Lammen, 1-Oct-2023)

Ref Expression
Assertion euim
|- ( ( E. x ph /\ A. x ( ph -> ps ) ) -> ( E! x ps -> E! x ph ) )

Proof

Step Hyp Ref Expression
1 euimmo
 |-  ( A. x ( ph -> ps ) -> ( E! x ps -> E* x ph ) )
2 exmoeub
 |-  ( E. x ph -> ( E* x ph <-> E! x ph ) )
3 2 biimpd
 |-  ( E. x ph -> ( E* x ph -> E! x ph ) )
4 1 3 sylan9r
 |-  ( ( E. x ph /\ A. x ( ph -> ps ) ) -> ( E! x ps -> E! x ph ) )