Description: Add unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005) (Proof shortened by Andrew Salmon, 14-Jun-2011) (Proof shortened by Wolf Lammen, 1-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | euim | |- ( ( E. x ph /\ A. x ( ph -> ps ) ) -> ( E! x ps -> E! x ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euimmo | |- ( A. x ( ph -> ps ) -> ( E! x ps -> E* x ph ) ) |
|
2 | exmoeub | |- ( E. x ph -> ( E* x ph <-> E! x ph ) ) |
|
3 | 2 | biimpd | |- ( E. x ph -> ( E* x ph -> E! x ph ) ) |
4 | 1 3 | sylan9r | |- ( ( E. x ph /\ A. x ( ph -> ps ) ) -> ( E! x ps -> E! x ph ) ) |