Step |
Hyp |
Ref |
Expression |
1 |
|
euind.1 |
|- B e. _V |
2 |
|
euind.2 |
|- ( x = y -> ( ph <-> ps ) ) |
3 |
2
|
cbvexvw |
|- ( E. x ph <-> E. y ps ) |
4 |
1
|
isseti |
|- E. z z = B |
5 |
4
|
biantrur |
|- ( ps <-> ( E. z z = B /\ ps ) ) |
6 |
5
|
exbii |
|- ( E. y ps <-> E. y ( E. z z = B /\ ps ) ) |
7 |
|
19.41v |
|- ( E. z ( z = B /\ ps ) <-> ( E. z z = B /\ ps ) ) |
8 |
7
|
exbii |
|- ( E. y E. z ( z = B /\ ps ) <-> E. y ( E. z z = B /\ ps ) ) |
9 |
|
excom |
|- ( E. y E. z ( z = B /\ ps ) <-> E. z E. y ( z = B /\ ps ) ) |
10 |
6 8 9
|
3bitr2i |
|- ( E. y ps <-> E. z E. y ( z = B /\ ps ) ) |
11 |
3 10
|
bitri |
|- ( E. x ph <-> E. z E. y ( z = B /\ ps ) ) |
12 |
|
eqeq2 |
|- ( A = B -> ( z = A <-> z = B ) ) |
13 |
12
|
imim2i |
|- ( ( ( ph /\ ps ) -> A = B ) -> ( ( ph /\ ps ) -> ( z = A <-> z = B ) ) ) |
14 |
|
biimpr |
|- ( ( z = A <-> z = B ) -> ( z = B -> z = A ) ) |
15 |
14
|
imim2i |
|- ( ( ( ph /\ ps ) -> ( z = A <-> z = B ) ) -> ( ( ph /\ ps ) -> ( z = B -> z = A ) ) ) |
16 |
|
an31 |
|- ( ( ( ph /\ ps ) /\ z = B ) <-> ( ( z = B /\ ps ) /\ ph ) ) |
17 |
16
|
imbi1i |
|- ( ( ( ( ph /\ ps ) /\ z = B ) -> z = A ) <-> ( ( ( z = B /\ ps ) /\ ph ) -> z = A ) ) |
18 |
|
impexp |
|- ( ( ( ( ph /\ ps ) /\ z = B ) -> z = A ) <-> ( ( ph /\ ps ) -> ( z = B -> z = A ) ) ) |
19 |
|
impexp |
|- ( ( ( ( z = B /\ ps ) /\ ph ) -> z = A ) <-> ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
20 |
17 18 19
|
3bitr3i |
|- ( ( ( ph /\ ps ) -> ( z = B -> z = A ) ) <-> ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
21 |
15 20
|
sylib |
|- ( ( ( ph /\ ps ) -> ( z = A <-> z = B ) ) -> ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
22 |
13 21
|
syl |
|- ( ( ( ph /\ ps ) -> A = B ) -> ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
23 |
22
|
2alimi |
|- ( A. x A. y ( ( ph /\ ps ) -> A = B ) -> A. x A. y ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
24 |
|
19.23v |
|- ( A. y ( ( z = B /\ ps ) -> ( ph -> z = A ) ) <-> ( E. y ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
25 |
24
|
albii |
|- ( A. x A. y ( ( z = B /\ ps ) -> ( ph -> z = A ) ) <-> A. x ( E. y ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
26 |
|
19.21v |
|- ( A. x ( E. y ( z = B /\ ps ) -> ( ph -> z = A ) ) <-> ( E. y ( z = B /\ ps ) -> A. x ( ph -> z = A ) ) ) |
27 |
25 26
|
bitri |
|- ( A. x A. y ( ( z = B /\ ps ) -> ( ph -> z = A ) ) <-> ( E. y ( z = B /\ ps ) -> A. x ( ph -> z = A ) ) ) |
28 |
23 27
|
sylib |
|- ( A. x A. y ( ( ph /\ ps ) -> A = B ) -> ( E. y ( z = B /\ ps ) -> A. x ( ph -> z = A ) ) ) |
29 |
28
|
eximdv |
|- ( A. x A. y ( ( ph /\ ps ) -> A = B ) -> ( E. z E. y ( z = B /\ ps ) -> E. z A. x ( ph -> z = A ) ) ) |
30 |
11 29
|
syl5bi |
|- ( A. x A. y ( ( ph /\ ps ) -> A = B ) -> ( E. x ph -> E. z A. x ( ph -> z = A ) ) ) |
31 |
30
|
imp |
|- ( ( A. x A. y ( ( ph /\ ps ) -> A = B ) /\ E. x ph ) -> E. z A. x ( ph -> z = A ) ) |
32 |
|
pm4.24 |
|- ( ph <-> ( ph /\ ph ) ) |
33 |
32
|
biimpi |
|- ( ph -> ( ph /\ ph ) ) |
34 |
|
anim12 |
|- ( ( ( ph -> z = A ) /\ ( ph -> w = A ) ) -> ( ( ph /\ ph ) -> ( z = A /\ w = A ) ) ) |
35 |
|
eqtr3 |
|- ( ( z = A /\ w = A ) -> z = w ) |
36 |
33 34 35
|
syl56 |
|- ( ( ( ph -> z = A ) /\ ( ph -> w = A ) ) -> ( ph -> z = w ) ) |
37 |
36
|
alanimi |
|- ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> A. x ( ph -> z = w ) ) |
38 |
|
19.23v |
|- ( A. x ( ph -> z = w ) <-> ( E. x ph -> z = w ) ) |
39 |
37 38
|
sylib |
|- ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> ( E. x ph -> z = w ) ) |
40 |
39
|
com12 |
|- ( E. x ph -> ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> z = w ) ) |
41 |
40
|
alrimivv |
|- ( E. x ph -> A. z A. w ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> z = w ) ) |
42 |
41
|
adantl |
|- ( ( A. x A. y ( ( ph /\ ps ) -> A = B ) /\ E. x ph ) -> A. z A. w ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> z = w ) ) |
43 |
|
eqeq1 |
|- ( z = w -> ( z = A <-> w = A ) ) |
44 |
43
|
imbi2d |
|- ( z = w -> ( ( ph -> z = A ) <-> ( ph -> w = A ) ) ) |
45 |
44
|
albidv |
|- ( z = w -> ( A. x ( ph -> z = A ) <-> A. x ( ph -> w = A ) ) ) |
46 |
45
|
eu4 |
|- ( E! z A. x ( ph -> z = A ) <-> ( E. z A. x ( ph -> z = A ) /\ A. z A. w ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> z = w ) ) ) |
47 |
31 42 46
|
sylanbrc |
|- ( ( A. x A. y ( ( ph /\ ps ) -> A = B ) /\ E. x ph ) -> E! z A. x ( ph -> z = A ) ) |