Metamath Proof Explorer


Theorem eulerid

Description: Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion eulerid
|- ( ( exp ` ( _i x. _pi ) ) + 1 ) = 0

Proof

Step Hyp Ref Expression
1 efipi
 |-  ( exp ` ( _i x. _pi ) ) = -u 1
2 1 oveq1i
 |-  ( ( exp ` ( _i x. _pi ) ) + 1 ) = ( -u 1 + 1 )
3 ax-1cn
 |-  1 e. CC
4 neg1cn
 |-  -u 1 e. CC
5 1pneg1e0
 |-  ( 1 + -u 1 ) = 0
6 3 4 5 addcomli
 |-  ( -u 1 + 1 ) = 0
7 2 6 eqtri
 |-  ( ( exp ` ( _i x. _pi ) ) + 1 ) = 0