Description: Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 9-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | eulerid | |- ( ( exp ` ( _i x. _pi ) ) + 1 ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efipi | |- ( exp ` ( _i x. _pi ) ) = -u 1 |
|
2 | 1 | oveq1i | |- ( ( exp ` ( _i x. _pi ) ) + 1 ) = ( -u 1 + 1 ) |
3 | ax-1cn | |- 1 e. CC |
|
4 | neg1cn | |- -u 1 e. CC |
|
5 | 1pneg1e0 | |- ( 1 + -u 1 ) = 0 |
|
6 | 3 4 5 | addcomli | |- ( -u 1 + 1 ) = 0 |
7 | 2 6 | eqtri | |- ( ( exp ` ( _i x. _pi ) ) + 1 ) = 0 |