Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
|- P = { f e. ( NN0 ^m NN ) | ( ( `' f " NN ) e. Fin /\ sum_ k e. NN ( ( f ` k ) x. k ) = N ) } |
2 |
|
nn0ex |
|- NN0 e. _V |
3 |
|
nnex |
|- NN e. _V |
4 |
2 3
|
elmap |
|- ( A e. ( NN0 ^m NN ) <-> A : NN --> NN0 ) |
5 |
4
|
anbi1i |
|- ( ( A e. ( NN0 ^m NN ) /\ ( ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) <-> ( A : NN --> NN0 /\ ( ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) ) |
6 |
|
cnveq |
|- ( f = A -> `' f = `' A ) |
7 |
6
|
imaeq1d |
|- ( f = A -> ( `' f " NN ) = ( `' A " NN ) ) |
8 |
7
|
eleq1d |
|- ( f = A -> ( ( `' f " NN ) e. Fin <-> ( `' A " NN ) e. Fin ) ) |
9 |
|
fveq1 |
|- ( f = A -> ( f ` k ) = ( A ` k ) ) |
10 |
9
|
oveq1d |
|- ( f = A -> ( ( f ` k ) x. k ) = ( ( A ` k ) x. k ) ) |
11 |
10
|
sumeq2sdv |
|- ( f = A -> sum_ k e. NN ( ( f ` k ) x. k ) = sum_ k e. NN ( ( A ` k ) x. k ) ) |
12 |
11
|
eqeq1d |
|- ( f = A -> ( sum_ k e. NN ( ( f ` k ) x. k ) = N <-> sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) |
13 |
8 12
|
anbi12d |
|- ( f = A -> ( ( ( `' f " NN ) e. Fin /\ sum_ k e. NN ( ( f ` k ) x. k ) = N ) <-> ( ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) ) |
14 |
13 1
|
elrab2 |
|- ( A e. P <-> ( A e. ( NN0 ^m NN ) /\ ( ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) ) |
15 |
|
3anass |
|- ( ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) <-> ( A : NN --> NN0 /\ ( ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) ) |
16 |
5 14 15
|
3bitr4i |
|- ( A e. P <-> ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) |