| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpart.p |  |-  P = { f e. ( NN0 ^m NN ) | ( ( `' f " NN ) e. Fin /\ sum_ k e. NN ( ( f ` k ) x. k ) = N ) } | 
						
							| 2 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 3 |  | nnex |  |-  NN e. _V | 
						
							| 4 | 2 3 | elmap |  |-  ( A e. ( NN0 ^m NN ) <-> A : NN --> NN0 ) | 
						
							| 5 | 4 | anbi1i |  |-  ( ( A e. ( NN0 ^m NN ) /\ ( ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) <-> ( A : NN --> NN0 /\ ( ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) ) | 
						
							| 6 |  | cnveq |  |-  ( f = A -> `' f = `' A ) | 
						
							| 7 | 6 | imaeq1d |  |-  ( f = A -> ( `' f " NN ) = ( `' A " NN ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( f = A -> ( ( `' f " NN ) e. Fin <-> ( `' A " NN ) e. Fin ) ) | 
						
							| 9 |  | fveq1 |  |-  ( f = A -> ( f ` k ) = ( A ` k ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( f = A -> ( ( f ` k ) x. k ) = ( ( A ` k ) x. k ) ) | 
						
							| 11 | 10 | sumeq2sdv |  |-  ( f = A -> sum_ k e. NN ( ( f ` k ) x. k ) = sum_ k e. NN ( ( A ` k ) x. k ) ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( f = A -> ( sum_ k e. NN ( ( f ` k ) x. k ) = N <-> sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) | 
						
							| 13 | 8 12 | anbi12d |  |-  ( f = A -> ( ( ( `' f " NN ) e. Fin /\ sum_ k e. NN ( ( f ` k ) x. k ) = N ) <-> ( ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) ) | 
						
							| 14 | 13 1 | elrab2 |  |-  ( A e. P <-> ( A e. ( NN0 ^m NN ) /\ ( ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) ) | 
						
							| 15 |  | 3anass |  |-  ( ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) <-> ( A : NN --> NN0 /\ ( ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) ) | 
						
							| 16 | 5 14 15 | 3bitr4i |  |-  ( A e. P <-> ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) |