Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpartlems.r |
|- R = { f | ( `' f " NN ) e. Fin } |
2 |
|
eulerpartlems.s |
|- S = ( f e. ( ( NN0 ^m NN ) i^i R ) |-> sum_ k e. NN ( ( f ` k ) x. k ) ) |
3 |
|
inss1 |
|- ( ( NN0 ^m NN ) i^i R ) C_ ( NN0 ^m NN ) |
4 |
3
|
sseli |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> A e. ( NN0 ^m NN ) ) |
5 |
|
elmapi |
|- ( A e. ( NN0 ^m NN ) -> A : NN --> NN0 ) |
6 |
4 5
|
syl |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> A : NN --> NN0 ) |
7 |
|
inss2 |
|- ( ( NN0 ^m NN ) i^i R ) C_ R |
8 |
7
|
sseli |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> A e. R ) |
9 |
|
cnveq |
|- ( f = A -> `' f = `' A ) |
10 |
9
|
imaeq1d |
|- ( f = A -> ( `' f " NN ) = ( `' A " NN ) ) |
11 |
10
|
eleq1d |
|- ( f = A -> ( ( `' f " NN ) e. Fin <-> ( `' A " NN ) e. Fin ) ) |
12 |
11 1
|
elab2g |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( A e. R <-> ( `' A " NN ) e. Fin ) ) |
13 |
8 12
|
mpbid |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( `' A " NN ) e. Fin ) |
14 |
6 13
|
jca |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) ) |