Metamath Proof Explorer


Theorem eulerpartlemelr

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 8-Aug-2018)

Ref Expression
Hypotheses eulerpartlems.r
|- R = { f | ( `' f " NN ) e. Fin }
eulerpartlems.s
|- S = ( f e. ( ( NN0 ^m NN ) i^i R ) |-> sum_ k e. NN ( ( f ` k ) x. k ) )
Assertion eulerpartlemelr
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) )

Proof

Step Hyp Ref Expression
1 eulerpartlems.r
 |-  R = { f | ( `' f " NN ) e. Fin }
2 eulerpartlems.s
 |-  S = ( f e. ( ( NN0 ^m NN ) i^i R ) |-> sum_ k e. NN ( ( f ` k ) x. k ) )
3 inss1
 |-  ( ( NN0 ^m NN ) i^i R ) C_ ( NN0 ^m NN )
4 3 sseli
 |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> A e. ( NN0 ^m NN ) )
5 elmapi
 |-  ( A e. ( NN0 ^m NN ) -> A : NN --> NN0 )
6 4 5 syl
 |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> A : NN --> NN0 )
7 inss2
 |-  ( ( NN0 ^m NN ) i^i R ) C_ R
8 7 sseli
 |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> A e. R )
9 cnveq
 |-  ( f = A -> `' f = `' A )
10 9 imaeq1d
 |-  ( f = A -> ( `' f " NN ) = ( `' A " NN ) )
11 10 eleq1d
 |-  ( f = A -> ( ( `' f " NN ) e. Fin <-> ( `' A " NN ) e. Fin ) )
12 11 1 elab2g
 |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( A e. R <-> ( `' A " NN ) e. Fin ) )
13 8 12 mpbid
 |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( `' A " NN ) e. Fin )
14 6 13 jca
 |-  ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) )