Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
|- P = { f e. ( NN0 ^m NN ) | ( ( `' f " NN ) e. Fin /\ sum_ k e. NN ( ( f ` k ) x. k ) = N ) } |
2 |
|
eulerpart.o |
|- O = { g e. P | A. n e. ( `' g " NN ) -. 2 || n } |
3 |
|
eulerpart.d |
|- D = { g e. P | A. n e. NN ( g ` n ) <_ 1 } |
4 |
|
eulerpart.j |
|- J = { z e. NN | -. 2 || z } |
5 |
|
eulerpart.f |
|- F = ( x e. J , y e. NN0 |-> ( ( 2 ^ y ) x. x ) ) |
6 |
|
eulerpart.h |
|- H = { r e. ( ( ~P NN0 i^i Fin ) ^m J ) | ( r supp (/) ) e. Fin } |
7 |
|
eulerpart.m |
|- M = ( r e. H |-> { <. x , y >. | ( x e. J /\ y e. ( r ` x ) ) } ) |
8 |
|
eulerpart.r |
|- R = { f | ( `' f " NN ) e. Fin } |
9 |
|
eulerpart.t |
|- T = { f e. ( NN0 ^m NN ) | ( `' f " NN ) C_ J } |
10 |
|
eulerpart.g |
|- G = ( o e. ( T i^i R ) |-> ( ( _Ind ` NN ) ` ( F " ( M ` ( bits o. ( o |` J ) ) ) ) ) ) |
11 |
|
eulerpartlemgh.1 |
|- U = U_ t e. ( ( `' A " NN ) i^i J ) ( { t } X. ( bits ` ( A ` t ) ) ) |
12 |
4 5
|
oddpwdc |
|- F : ( J X. NN0 ) -1-1-onto-> NN |
13 |
|
f1of1 |
|- ( F : ( J X. NN0 ) -1-1-onto-> NN -> F : ( J X. NN0 ) -1-1-> NN ) |
14 |
12 13
|
ax-mp |
|- F : ( J X. NN0 ) -1-1-> NN |
15 |
|
iunss |
|- ( U_ t e. ( ( `' A " NN ) i^i J ) ( { t } X. ( bits ` ( A ` t ) ) ) C_ ( J X. NN0 ) <-> A. t e. ( ( `' A " NN ) i^i J ) ( { t } X. ( bits ` ( A ` t ) ) ) C_ ( J X. NN0 ) ) |
16 |
|
inss2 |
|- ( ( `' A " NN ) i^i J ) C_ J |
17 |
16
|
sseli |
|- ( t e. ( ( `' A " NN ) i^i J ) -> t e. J ) |
18 |
17
|
snssd |
|- ( t e. ( ( `' A " NN ) i^i J ) -> { t } C_ J ) |
19 |
|
bitsss |
|- ( bits ` ( A ` t ) ) C_ NN0 |
20 |
|
xpss12 |
|- ( ( { t } C_ J /\ ( bits ` ( A ` t ) ) C_ NN0 ) -> ( { t } X. ( bits ` ( A ` t ) ) ) C_ ( J X. NN0 ) ) |
21 |
18 19 20
|
sylancl |
|- ( t e. ( ( `' A " NN ) i^i J ) -> ( { t } X. ( bits ` ( A ` t ) ) ) C_ ( J X. NN0 ) ) |
22 |
15 21
|
mprgbir |
|- U_ t e. ( ( `' A " NN ) i^i J ) ( { t } X. ( bits ` ( A ` t ) ) ) C_ ( J X. NN0 ) |
23 |
11 22
|
eqsstri |
|- U C_ ( J X. NN0 ) |
24 |
|
f1ores |
|- ( ( F : ( J X. NN0 ) -1-1-> NN /\ U C_ ( J X. NN0 ) ) -> ( F |` U ) : U -1-1-onto-> ( F " U ) ) |
25 |
14 23 24
|
mp2an |
|- ( F |` U ) : U -1-1-onto-> ( F " U ) |
26 |
|
simpr |
|- ( ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ n e. ( bits ` ( A ` t ) ) ) /\ ( ( 2 ^ n ) x. t ) = p ) -> ( ( 2 ^ n ) x. t ) = p ) |
27 |
|
2nn |
|- 2 e. NN |
28 |
27
|
a1i |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ n e. ( bits ` ( A ` t ) ) ) -> 2 e. NN ) |
29 |
19
|
sseli |
|- ( n e. ( bits ` ( A ` t ) ) -> n e. NN0 ) |
30 |
29
|
adantl |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ n e. ( bits ` ( A ` t ) ) ) -> n e. NN0 ) |
31 |
28 30
|
nnexpcld |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ n e. ( bits ` ( A ` t ) ) ) -> ( 2 ^ n ) e. NN ) |
32 |
|
simplr |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ n e. ( bits ` ( A ` t ) ) ) -> t e. NN ) |
33 |
31 32
|
nnmulcld |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ n e. ( bits ` ( A ` t ) ) ) -> ( ( 2 ^ n ) x. t ) e. NN ) |
34 |
33
|
adantr |
|- ( ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ n e. ( bits ` ( A ` t ) ) ) /\ ( ( 2 ^ n ) x. t ) = p ) -> ( ( 2 ^ n ) x. t ) e. NN ) |
35 |
26 34
|
eqeltrrd |
|- ( ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ n e. ( bits ` ( A ` t ) ) ) /\ ( ( 2 ^ n ) x. t ) = p ) -> p e. NN ) |
36 |
35
|
rexlimdva2 |
|- ( ( A e. ( T i^i R ) /\ t e. NN ) -> ( E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p -> p e. NN ) ) |
37 |
36
|
rexlimdva |
|- ( A e. ( T i^i R ) -> ( E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p -> p e. NN ) ) |
38 |
37
|
pm4.71rd |
|- ( A e. ( T i^i R ) -> ( E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p <-> ( p e. NN /\ E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) ) |
39 |
|
rex0 |
|- -. E. n e. (/) ( ( 2 ^ n ) x. t ) = p |
40 |
|
simplr |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> t e. NN ) |
41 |
|
simpr |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> -. t e. ( `' A " NN ) ) |
42 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemt0 |
|- ( A e. ( T i^i R ) <-> ( A e. ( NN0 ^m NN ) /\ ( `' A " NN ) e. Fin /\ ( `' A " NN ) C_ J ) ) |
43 |
42
|
simp1bi |
|- ( A e. ( T i^i R ) -> A e. ( NN0 ^m NN ) ) |
44 |
|
elmapi |
|- ( A e. ( NN0 ^m NN ) -> A : NN --> NN0 ) |
45 |
43 44
|
syl |
|- ( A e. ( T i^i R ) -> A : NN --> NN0 ) |
46 |
45
|
ad2antrr |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> A : NN --> NN0 ) |
47 |
|
ffn |
|- ( A : NN --> NN0 -> A Fn NN ) |
48 |
|
elpreima |
|- ( A Fn NN -> ( t e. ( `' A " NN ) <-> ( t e. NN /\ ( A ` t ) e. NN ) ) ) |
49 |
46 47 48
|
3syl |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> ( t e. ( `' A " NN ) <-> ( t e. NN /\ ( A ` t ) e. NN ) ) ) |
50 |
41 49
|
mtbid |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> -. ( t e. NN /\ ( A ` t ) e. NN ) ) |
51 |
|
imnan |
|- ( ( t e. NN -> -. ( A ` t ) e. NN ) <-> -. ( t e. NN /\ ( A ` t ) e. NN ) ) |
52 |
50 51
|
sylibr |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> ( t e. NN -> -. ( A ` t ) e. NN ) ) |
53 |
40 52
|
mpd |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> -. ( A ` t ) e. NN ) |
54 |
46 40
|
ffvelrnd |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> ( A ` t ) e. NN0 ) |
55 |
|
elnn0 |
|- ( ( A ` t ) e. NN0 <-> ( ( A ` t ) e. NN \/ ( A ` t ) = 0 ) ) |
56 |
54 55
|
sylib |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> ( ( A ` t ) e. NN \/ ( A ` t ) = 0 ) ) |
57 |
|
orel1 |
|- ( -. ( A ` t ) e. NN -> ( ( ( A ` t ) e. NN \/ ( A ` t ) = 0 ) -> ( A ` t ) = 0 ) ) |
58 |
53 56 57
|
sylc |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> ( A ` t ) = 0 ) |
59 |
58
|
fveq2d |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> ( bits ` ( A ` t ) ) = ( bits ` 0 ) ) |
60 |
|
0bits |
|- ( bits ` 0 ) = (/) |
61 |
59 60
|
eqtrdi |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> ( bits ` ( A ` t ) ) = (/) ) |
62 |
61
|
rexeqdv |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> ( E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p <-> E. n e. (/) ( ( 2 ^ n ) x. t ) = p ) ) |
63 |
39 62
|
mtbiri |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. ( `' A " NN ) ) -> -. E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) |
64 |
63
|
ex |
|- ( ( A e. ( T i^i R ) /\ t e. NN ) -> ( -. t e. ( `' A " NN ) -> -. E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
65 |
64
|
con4d |
|- ( ( A e. ( T i^i R ) /\ t e. NN ) -> ( E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p -> t e. ( `' A " NN ) ) ) |
66 |
65
|
impr |
|- ( ( A e. ( T i^i R ) /\ ( t e. NN /\ E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) -> t e. ( `' A " NN ) ) |
67 |
|
eldif |
|- ( t e. ( NN \ J ) <-> ( t e. NN /\ -. t e. J ) ) |
68 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemf |
|- ( ( A e. ( T i^i R ) /\ t e. ( NN \ J ) ) -> ( A ` t ) = 0 ) |
69 |
67 68
|
sylan2br |
|- ( ( A e. ( T i^i R ) /\ ( t e. NN /\ -. t e. J ) ) -> ( A ` t ) = 0 ) |
70 |
69
|
anassrs |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. J ) -> ( A ` t ) = 0 ) |
71 |
70
|
fveq2d |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. J ) -> ( bits ` ( A ` t ) ) = ( bits ` 0 ) ) |
72 |
71 60
|
eqtrdi |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. J ) -> ( bits ` ( A ` t ) ) = (/) ) |
73 |
72
|
rexeqdv |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. J ) -> ( E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p <-> E. n e. (/) ( ( 2 ^ n ) x. t ) = p ) ) |
74 |
39 73
|
mtbiri |
|- ( ( ( A e. ( T i^i R ) /\ t e. NN ) /\ -. t e. J ) -> -. E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) |
75 |
74
|
ex |
|- ( ( A e. ( T i^i R ) /\ t e. NN ) -> ( -. t e. J -> -. E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
76 |
75
|
con4d |
|- ( ( A e. ( T i^i R ) /\ t e. NN ) -> ( E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p -> t e. J ) ) |
77 |
76
|
impr |
|- ( ( A e. ( T i^i R ) /\ ( t e. NN /\ E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) -> t e. J ) |
78 |
66 77
|
elind |
|- ( ( A e. ( T i^i R ) /\ ( t e. NN /\ E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) -> t e. ( ( `' A " NN ) i^i J ) ) |
79 |
|
simprr |
|- ( ( A e. ( T i^i R ) /\ ( t e. NN /\ E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) -> E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) |
80 |
78 79
|
jca |
|- ( ( A e. ( T i^i R ) /\ ( t e. NN /\ E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) -> ( t e. ( ( `' A " NN ) i^i J ) /\ E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
81 |
80
|
ex |
|- ( A e. ( T i^i R ) -> ( ( t e. NN /\ E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) -> ( t e. ( ( `' A " NN ) i^i J ) /\ E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) ) |
82 |
81
|
reximdv2 |
|- ( A e. ( T i^i R ) -> ( E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p -> E. t e. ( ( `' A " NN ) i^i J ) E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
83 |
|
ssrab2 |
|- { z e. NN | -. 2 || z } C_ NN |
84 |
4 83
|
eqsstri |
|- J C_ NN |
85 |
16 84
|
sstri |
|- ( ( `' A " NN ) i^i J ) C_ NN |
86 |
|
ssrexv |
|- ( ( ( `' A " NN ) i^i J ) C_ NN -> ( E. t e. ( ( `' A " NN ) i^i J ) E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p -> E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
87 |
85 86
|
mp1i |
|- ( A e. ( T i^i R ) -> ( E. t e. ( ( `' A " NN ) i^i J ) E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p -> E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
88 |
82 87
|
impbid |
|- ( A e. ( T i^i R ) -> ( E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p <-> E. t e. ( ( `' A " NN ) i^i J ) E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
89 |
38 88
|
bitr3d |
|- ( A e. ( T i^i R ) -> ( ( p e. NN /\ E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) <-> E. t e. ( ( `' A " NN ) i^i J ) E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
90 |
|
eqeq2 |
|- ( m = p -> ( ( ( 2 ^ n ) x. t ) = m <-> ( ( 2 ^ n ) x. t ) = p ) ) |
91 |
90
|
2rexbidv |
|- ( m = p -> ( E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = m <-> E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
92 |
91
|
elrab |
|- ( p e. { m e. NN | E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = m } <-> ( p e. NN /\ E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
93 |
92
|
a1i |
|- ( A e. ( T i^i R ) -> ( p e. { m e. NN | E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = m } <-> ( p e. NN /\ E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) ) |
94 |
11
|
imaeq2i |
|- ( F " U ) = ( F " U_ t e. ( ( `' A " NN ) i^i J ) ( { t } X. ( bits ` ( A ` t ) ) ) ) |
95 |
|
imaiun |
|- ( F " U_ t e. ( ( `' A " NN ) i^i J ) ( { t } X. ( bits ` ( A ` t ) ) ) ) = U_ t e. ( ( `' A " NN ) i^i J ) ( F " ( { t } X. ( bits ` ( A ` t ) ) ) ) |
96 |
94 95
|
eqtri |
|- ( F " U ) = U_ t e. ( ( `' A " NN ) i^i J ) ( F " ( { t } X. ( bits ` ( A ` t ) ) ) ) |
97 |
96
|
eleq2i |
|- ( p e. ( F " U ) <-> p e. U_ t e. ( ( `' A " NN ) i^i J ) ( F " ( { t } X. ( bits ` ( A ` t ) ) ) ) ) |
98 |
|
eliun |
|- ( p e. U_ t e. ( ( `' A " NN ) i^i J ) ( F " ( { t } X. ( bits ` ( A ` t ) ) ) ) <-> E. t e. ( ( `' A " NN ) i^i J ) p e. ( F " ( { t } X. ( bits ` ( A ` t ) ) ) ) ) |
99 |
|
f1ofn |
|- ( F : ( J X. NN0 ) -1-1-onto-> NN -> F Fn ( J X. NN0 ) ) |
100 |
12 99
|
ax-mp |
|- F Fn ( J X. NN0 ) |
101 |
|
snssi |
|- ( t e. J -> { t } C_ J ) |
102 |
101 19 20
|
sylancl |
|- ( t e. J -> ( { t } X. ( bits ` ( A ` t ) ) ) C_ ( J X. NN0 ) ) |
103 |
|
ovelimab |
|- ( ( F Fn ( J X. NN0 ) /\ ( { t } X. ( bits ` ( A ` t ) ) ) C_ ( J X. NN0 ) ) -> ( p e. ( F " ( { t } X. ( bits ` ( A ` t ) ) ) ) <-> E. x e. { t } E. n e. ( bits ` ( A ` t ) ) p = ( x F n ) ) ) |
104 |
100 102 103
|
sylancr |
|- ( t e. J -> ( p e. ( F " ( { t } X. ( bits ` ( A ` t ) ) ) ) <-> E. x e. { t } E. n e. ( bits ` ( A ` t ) ) p = ( x F n ) ) ) |
105 |
|
vex |
|- t e. _V |
106 |
|
oveq1 |
|- ( x = t -> ( x F n ) = ( t F n ) ) |
107 |
106
|
eqeq2d |
|- ( x = t -> ( p = ( x F n ) <-> p = ( t F n ) ) ) |
108 |
107
|
rexbidv |
|- ( x = t -> ( E. n e. ( bits ` ( A ` t ) ) p = ( x F n ) <-> E. n e. ( bits ` ( A ` t ) ) p = ( t F n ) ) ) |
109 |
105 108
|
rexsn |
|- ( E. x e. { t } E. n e. ( bits ` ( A ` t ) ) p = ( x F n ) <-> E. n e. ( bits ` ( A ` t ) ) p = ( t F n ) ) |
110 |
104 109
|
bitrdi |
|- ( t e. J -> ( p e. ( F " ( { t } X. ( bits ` ( A ` t ) ) ) ) <-> E. n e. ( bits ` ( A ` t ) ) p = ( t F n ) ) ) |
111 |
|
df-ov |
|- ( t F n ) = ( F ` <. t , n >. ) |
112 |
111
|
eqeq1i |
|- ( ( t F n ) = p <-> ( F ` <. t , n >. ) = p ) |
113 |
|
eqcom |
|- ( ( t F n ) = p <-> p = ( t F n ) ) |
114 |
112 113
|
bitr3i |
|- ( ( F ` <. t , n >. ) = p <-> p = ( t F n ) ) |
115 |
|
opelxpi |
|- ( ( t e. J /\ n e. NN0 ) -> <. t , n >. e. ( J X. NN0 ) ) |
116 |
4 5
|
oddpwdcv |
|- ( <. t , n >. e. ( J X. NN0 ) -> ( F ` <. t , n >. ) = ( ( 2 ^ ( 2nd ` <. t , n >. ) ) x. ( 1st ` <. t , n >. ) ) ) |
117 |
|
vex |
|- n e. _V |
118 |
105 117
|
op2nd |
|- ( 2nd ` <. t , n >. ) = n |
119 |
118
|
oveq2i |
|- ( 2 ^ ( 2nd ` <. t , n >. ) ) = ( 2 ^ n ) |
120 |
105 117
|
op1st |
|- ( 1st ` <. t , n >. ) = t |
121 |
119 120
|
oveq12i |
|- ( ( 2 ^ ( 2nd ` <. t , n >. ) ) x. ( 1st ` <. t , n >. ) ) = ( ( 2 ^ n ) x. t ) |
122 |
116 121
|
eqtrdi |
|- ( <. t , n >. e. ( J X. NN0 ) -> ( F ` <. t , n >. ) = ( ( 2 ^ n ) x. t ) ) |
123 |
115 122
|
syl |
|- ( ( t e. J /\ n e. NN0 ) -> ( F ` <. t , n >. ) = ( ( 2 ^ n ) x. t ) ) |
124 |
123
|
eqeq1d |
|- ( ( t e. J /\ n e. NN0 ) -> ( ( F ` <. t , n >. ) = p <-> ( ( 2 ^ n ) x. t ) = p ) ) |
125 |
114 124
|
bitr3id |
|- ( ( t e. J /\ n e. NN0 ) -> ( p = ( t F n ) <-> ( ( 2 ^ n ) x. t ) = p ) ) |
126 |
29 125
|
sylan2 |
|- ( ( t e. J /\ n e. ( bits ` ( A ` t ) ) ) -> ( p = ( t F n ) <-> ( ( 2 ^ n ) x. t ) = p ) ) |
127 |
126
|
rexbidva |
|- ( t e. J -> ( E. n e. ( bits ` ( A ` t ) ) p = ( t F n ) <-> E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
128 |
110 127
|
bitrd |
|- ( t e. J -> ( p e. ( F " ( { t } X. ( bits ` ( A ` t ) ) ) ) <-> E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
129 |
17 128
|
syl |
|- ( t e. ( ( `' A " NN ) i^i J ) -> ( p e. ( F " ( { t } X. ( bits ` ( A ` t ) ) ) ) <-> E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
130 |
129
|
rexbiia |
|- ( E. t e. ( ( `' A " NN ) i^i J ) p e. ( F " ( { t } X. ( bits ` ( A ` t ) ) ) ) <-> E. t e. ( ( `' A " NN ) i^i J ) E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) |
131 |
97 98 130
|
3bitri |
|- ( p e. ( F " U ) <-> E. t e. ( ( `' A " NN ) i^i J ) E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) |
132 |
131
|
a1i |
|- ( A e. ( T i^i R ) -> ( p e. ( F " U ) <-> E. t e. ( ( `' A " NN ) i^i J ) E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = p ) ) |
133 |
89 93 132
|
3bitr4rd |
|- ( A e. ( T i^i R ) -> ( p e. ( F " U ) <-> p e. { m e. NN | E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = m } ) ) |
134 |
133
|
eqrdv |
|- ( A e. ( T i^i R ) -> ( F " U ) = { m e. NN | E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = m } ) |
135 |
|
f1oeq3 |
|- ( ( F " U ) = { m e. NN | E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = m } -> ( ( F |` U ) : U -1-1-onto-> ( F " U ) <-> ( F |` U ) : U -1-1-onto-> { m e. NN | E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = m } ) ) |
136 |
134 135
|
syl |
|- ( A e. ( T i^i R ) -> ( ( F |` U ) : U -1-1-onto-> ( F " U ) <-> ( F |` U ) : U -1-1-onto-> { m e. NN | E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = m } ) ) |
137 |
25 136
|
mpbii |
|- ( A e. ( T i^i R ) -> ( F |` U ) : U -1-1-onto-> { m e. NN | E. t e. NN E. n e. ( bits ` ( A ` t ) ) ( ( 2 ^ n ) x. t ) = m } ) |