Description: Lemma for eulerpart : O is the set of odd partitions of N . (Contributed by Thierry Arnoux, 10-Aug-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eulerpart.p | |- P = { f e. ( NN0 ^m NN ) | ( ( `' f " NN ) e. Fin /\ sum_ k e. NN ( ( f ` k ) x. k ) = N ) } |
|
eulerpart.o | |- O = { g e. P | A. n e. ( `' g " NN ) -. 2 || n } |
||
eulerpart.d | |- D = { g e. P | A. n e. NN ( g ` n ) <_ 1 } |
||
Assertion | eulerpartlemo | |- ( A e. O <-> ( A e. P /\ A. n e. ( `' A " NN ) -. 2 || n ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerpart.p | |- P = { f e. ( NN0 ^m NN ) | ( ( `' f " NN ) e. Fin /\ sum_ k e. NN ( ( f ` k ) x. k ) = N ) } |
|
2 | eulerpart.o | |- O = { g e. P | A. n e. ( `' g " NN ) -. 2 || n } |
|
3 | eulerpart.d | |- D = { g e. P | A. n e. NN ( g ` n ) <_ 1 } |
|
4 | cnveq | |- ( g = A -> `' g = `' A ) |
|
5 | 4 | imaeq1d | |- ( g = A -> ( `' g " NN ) = ( `' A " NN ) ) |
6 | 5 | raleqdv | |- ( g = A -> ( A. n e. ( `' g " NN ) -. 2 || n <-> A. n e. ( `' A " NN ) -. 2 || n ) ) |
7 | 6 2 | elrab2 | |- ( A e. O <-> ( A e. P /\ A. n e. ( `' A " NN ) -. 2 || n ) ) |