Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpartlems.r |
|- R = { f | ( `' f " NN ) e. Fin } |
2 |
|
eulerpartlems.s |
|- S = ( f e. ( ( NN0 ^m NN ) i^i R ) |-> sum_ k e. NN ( ( f ` k ) x. k ) ) |
3 |
|
simpl |
|- ( ( g = f /\ k e. NN ) -> g = f ) |
4 |
3
|
fveq1d |
|- ( ( g = f /\ k e. NN ) -> ( g ` k ) = ( f ` k ) ) |
5 |
4
|
oveq1d |
|- ( ( g = f /\ k e. NN ) -> ( ( g ` k ) x. k ) = ( ( f ` k ) x. k ) ) |
6 |
5
|
sumeq2dv |
|- ( g = f -> sum_ k e. NN ( ( g ` k ) x. k ) = sum_ k e. NN ( ( f ` k ) x. k ) ) |
7 |
6
|
eleq1d |
|- ( g = f -> ( sum_ k e. NN ( ( g ` k ) x. k ) e. NN0 <-> sum_ k e. NN ( ( f ` k ) x. k ) e. NN0 ) ) |
8 |
1 2
|
eulerpartlemsv2 |
|- ( g e. ( ( NN0 ^m NN ) i^i R ) -> ( S ` g ) = sum_ k e. ( `' g " NN ) ( ( g ` k ) x. k ) ) |
9 |
1 2
|
eulerpartlemsv1 |
|- ( g e. ( ( NN0 ^m NN ) i^i R ) -> ( S ` g ) = sum_ k e. NN ( ( g ` k ) x. k ) ) |
10 |
8 9
|
eqtr3d |
|- ( g e. ( ( NN0 ^m NN ) i^i R ) -> sum_ k e. ( `' g " NN ) ( ( g ` k ) x. k ) = sum_ k e. NN ( ( g ` k ) x. k ) ) |
11 |
1 2
|
eulerpartlemelr |
|- ( g e. ( ( NN0 ^m NN ) i^i R ) -> ( g : NN --> NN0 /\ ( `' g " NN ) e. Fin ) ) |
12 |
11
|
simprd |
|- ( g e. ( ( NN0 ^m NN ) i^i R ) -> ( `' g " NN ) e. Fin ) |
13 |
11
|
simpld |
|- ( g e. ( ( NN0 ^m NN ) i^i R ) -> g : NN --> NN0 ) |
14 |
13
|
adantr |
|- ( ( g e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( `' g " NN ) ) -> g : NN --> NN0 ) |
15 |
|
cnvimass |
|- ( `' g " NN ) C_ dom g |
16 |
15 13
|
fssdm |
|- ( g e. ( ( NN0 ^m NN ) i^i R ) -> ( `' g " NN ) C_ NN ) |
17 |
16
|
sselda |
|- ( ( g e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( `' g " NN ) ) -> k e. NN ) |
18 |
14 17
|
ffvelrnd |
|- ( ( g e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( `' g " NN ) ) -> ( g ` k ) e. NN0 ) |
19 |
17
|
nnnn0d |
|- ( ( g e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( `' g " NN ) ) -> k e. NN0 ) |
20 |
18 19
|
nn0mulcld |
|- ( ( g e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( `' g " NN ) ) -> ( ( g ` k ) x. k ) e. NN0 ) |
21 |
12 20
|
fsumnn0cl |
|- ( g e. ( ( NN0 ^m NN ) i^i R ) -> sum_ k e. ( `' g " NN ) ( ( g ` k ) x. k ) e. NN0 ) |
22 |
10 21
|
eqeltrrd |
|- ( g e. ( ( NN0 ^m NN ) i^i R ) -> sum_ k e. NN ( ( g ` k ) x. k ) e. NN0 ) |
23 |
7 22
|
vtoclga |
|- ( f e. ( ( NN0 ^m NN ) i^i R ) -> sum_ k e. NN ( ( f ` k ) x. k ) e. NN0 ) |
24 |
2 23
|
fmpti |
|- S : ( ( NN0 ^m NN ) i^i R ) --> NN0 |