Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpartlems.r |
|- R = { f | ( `' f " NN ) e. Fin } |
2 |
|
eulerpartlems.s |
|- S = ( f e. ( ( NN0 ^m NN ) i^i R ) |-> sum_ k e. NN ( ( f ` k ) x. k ) ) |
3 |
1 2
|
eulerpartlemsv1 |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( S ` A ) = sum_ k e. NN ( ( A ` k ) x. k ) ) |
4 |
|
cnvimass |
|- ( `' A " NN ) C_ dom A |
5 |
1 2
|
eulerpartlemelr |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) ) |
6 |
5
|
simpld |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> A : NN --> NN0 ) |
7 |
4 6
|
fssdm |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( `' A " NN ) C_ NN ) |
8 |
6
|
adantr |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( `' A " NN ) ) -> A : NN --> NN0 ) |
9 |
7
|
sselda |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( `' A " NN ) ) -> k e. NN ) |
10 |
8 9
|
ffvelrnd |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( `' A " NN ) ) -> ( A ` k ) e. NN0 ) |
11 |
9
|
nnnn0d |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( `' A " NN ) ) -> k e. NN0 ) |
12 |
10 11
|
nn0mulcld |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( `' A " NN ) ) -> ( ( A ` k ) x. k ) e. NN0 ) |
13 |
12
|
nn0cnd |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( `' A " NN ) ) -> ( ( A ` k ) x. k ) e. CC ) |
14 |
|
simpr |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> k e. ( NN \ ( `' A " NN ) ) ) |
15 |
14
|
eldifad |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> k e. NN ) |
16 |
14
|
eldifbd |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> -. k e. ( `' A " NN ) ) |
17 |
6
|
adantr |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> A : NN --> NN0 ) |
18 |
|
ffn |
|- ( A : NN --> NN0 -> A Fn NN ) |
19 |
|
elpreima |
|- ( A Fn NN -> ( k e. ( `' A " NN ) <-> ( k e. NN /\ ( A ` k ) e. NN ) ) ) |
20 |
17 18 19
|
3syl |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( k e. ( `' A " NN ) <-> ( k e. NN /\ ( A ` k ) e. NN ) ) ) |
21 |
16 20
|
mtbid |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> -. ( k e. NN /\ ( A ` k ) e. NN ) ) |
22 |
|
imnan |
|- ( ( k e. NN -> -. ( A ` k ) e. NN ) <-> -. ( k e. NN /\ ( A ` k ) e. NN ) ) |
23 |
21 22
|
sylibr |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( k e. NN -> -. ( A ` k ) e. NN ) ) |
24 |
15 23
|
mpd |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> -. ( A ` k ) e. NN ) |
25 |
17 15
|
ffvelrnd |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( A ` k ) e. NN0 ) |
26 |
|
elnn0 |
|- ( ( A ` k ) e. NN0 <-> ( ( A ` k ) e. NN \/ ( A ` k ) = 0 ) ) |
27 |
25 26
|
sylib |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( ( A ` k ) e. NN \/ ( A ` k ) = 0 ) ) |
28 |
|
orel1 |
|- ( -. ( A ` k ) e. NN -> ( ( ( A ` k ) e. NN \/ ( A ` k ) = 0 ) -> ( A ` k ) = 0 ) ) |
29 |
24 27 28
|
sylc |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( A ` k ) = 0 ) |
30 |
29
|
oveq1d |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( ( A ` k ) x. k ) = ( 0 x. k ) ) |
31 |
15
|
nncnd |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> k e. CC ) |
32 |
31
|
mul02d |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( 0 x. k ) = 0 ) |
33 |
30 32
|
eqtrd |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( ( A ` k ) x. k ) = 0 ) |
34 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
35 |
34
|
eqimssi |
|- NN C_ ( ZZ>= ` 1 ) |
36 |
35
|
a1i |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> NN C_ ( ZZ>= ` 1 ) ) |
37 |
7 13 33 36
|
sumss |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> sum_ k e. ( `' A " NN ) ( ( A ` k ) x. k ) = sum_ k e. NN ( ( A ` k ) x. k ) ) |
38 |
3 37
|
eqtr4d |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( S ` A ) = sum_ k e. ( `' A " NN ) ( ( A ` k ) x. k ) ) |