Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpartlems.r |
|- R = { f | ( `' f " NN ) e. Fin } |
2 |
|
eulerpartlems.s |
|- S = ( f e. ( ( NN0 ^m NN ) i^i R ) |-> sum_ k e. NN ( ( f ` k ) x. k ) ) |
3 |
1 2
|
eulerpartlemsv1 |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( S ` A ) = sum_ k e. NN ( ( A ` k ) x. k ) ) |
4 |
|
fzssuz |
|- ( 1 ... ( S ` A ) ) C_ ( ZZ>= ` 1 ) |
5 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
6 |
4 5
|
sseqtrri |
|- ( 1 ... ( S ` A ) ) C_ NN |
7 |
6
|
a1i |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( 1 ... ( S ` A ) ) C_ NN ) |
8 |
1 2
|
eulerpartlemelr |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) ) |
9 |
8
|
simpld |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> A : NN --> NN0 ) |
10 |
9
|
adantr |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( 1 ... ( S ` A ) ) ) -> A : NN --> NN0 ) |
11 |
7
|
sselda |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( 1 ... ( S ` A ) ) ) -> k e. NN ) |
12 |
10 11
|
ffvelrnd |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( 1 ... ( S ` A ) ) ) -> ( A ` k ) e. NN0 ) |
13 |
12
|
nn0cnd |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( 1 ... ( S ` A ) ) ) -> ( A ` k ) e. CC ) |
14 |
11
|
nncnd |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( 1 ... ( S ` A ) ) ) -> k e. CC ) |
15 |
13 14
|
mulcld |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( 1 ... ( S ` A ) ) ) -> ( ( A ` k ) x. k ) e. CC ) |
16 |
1 2
|
eulerpartlems |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ t e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ) -> ( A ` t ) = 0 ) |
17 |
16
|
ralrimiva |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> A. t e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ( A ` t ) = 0 ) |
18 |
|
fveqeq2 |
|- ( k = t -> ( ( A ` k ) = 0 <-> ( A ` t ) = 0 ) ) |
19 |
18
|
cbvralvw |
|- ( A. k e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ( A ` k ) = 0 <-> A. t e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ( A ` t ) = 0 ) |
20 |
17 19
|
sylibr |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> A. k e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ( A ` k ) = 0 ) |
21 |
1 2
|
eulerpartlemsf |
|- S : ( ( NN0 ^m NN ) i^i R ) --> NN0 |
22 |
21
|
ffvelrni |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( S ` A ) e. NN0 ) |
23 |
|
nndiffz1 |
|- ( ( S ` A ) e. NN0 -> ( NN \ ( 1 ... ( S ` A ) ) ) = ( ZZ>= ` ( ( S ` A ) + 1 ) ) ) |
24 |
22 23
|
syl |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( NN \ ( 1 ... ( S ` A ) ) ) = ( ZZ>= ` ( ( S ` A ) + 1 ) ) ) |
25 |
24
|
raleqdv |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( A. k e. ( NN \ ( 1 ... ( S ` A ) ) ) ( A ` k ) = 0 <-> A. k e. ( ZZ>= ` ( ( S ` A ) + 1 ) ) ( A ` k ) = 0 ) ) |
26 |
20 25
|
mpbird |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> A. k e. ( NN \ ( 1 ... ( S ` A ) ) ) ( A ` k ) = 0 ) |
27 |
26
|
r19.21bi |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> ( A ` k ) = 0 ) |
28 |
27
|
oveq1d |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> ( ( A ` k ) x. k ) = ( 0 x. k ) ) |
29 |
|
simpr |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) |
30 |
29
|
eldifad |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> k e. NN ) |
31 |
30
|
nncnd |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> k e. CC ) |
32 |
31
|
mul02d |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> ( 0 x. k ) = 0 ) |
33 |
28 32
|
eqtrd |
|- ( ( A e. ( ( NN0 ^m NN ) i^i R ) /\ k e. ( NN \ ( 1 ... ( S ` A ) ) ) ) -> ( ( A ` k ) x. k ) = 0 ) |
34 |
5
|
eqimssi |
|- NN C_ ( ZZ>= ` 1 ) |
35 |
34
|
a1i |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> NN C_ ( ZZ>= ` 1 ) ) |
36 |
7 15 33 35
|
sumss |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> sum_ k e. ( 1 ... ( S ` A ) ) ( ( A ` k ) x. k ) = sum_ k e. NN ( ( A ` k ) x. k ) ) |
37 |
3 36
|
eqtr4d |
|- ( A e. ( ( NN0 ^m NN ) i^i R ) -> ( S ` A ) = sum_ k e. ( 1 ... ( S ` A ) ) ( ( A ` k ) x. k ) ) |