Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
|- P = { f e. ( NN0 ^m NN ) | ( ( `' f " NN ) e. Fin /\ sum_ k e. NN ( ( f ` k ) x. k ) = N ) } |
2 |
|
eulerpart.o |
|- O = { g e. P | A. n e. ( `' g " NN ) -. 2 || n } |
3 |
|
eulerpart.d |
|- D = { g e. P | A. n e. NN ( g ` n ) <_ 1 } |
4 |
|
eulerpart.j |
|- J = { z e. NN | -. 2 || z } |
5 |
|
eulerpart.f |
|- F = ( x e. J , y e. NN0 |-> ( ( 2 ^ y ) x. x ) ) |
6 |
|
eulerpart.h |
|- H = { r e. ( ( ~P NN0 i^i Fin ) ^m J ) | ( r supp (/) ) e. Fin } |
7 |
|
eulerpart.m |
|- M = ( r e. H |-> { <. x , y >. | ( x e. J /\ y e. ( r ` x ) ) } ) |
8 |
|
eulerpart.r |
|- R = { f | ( `' f " NN ) e. Fin } |
9 |
|
eulerpart.t |
|- T = { f e. ( NN0 ^m NN ) | ( `' f " NN ) C_ J } |
10 |
|
cnveq |
|- ( f = A -> `' f = `' A ) |
11 |
10
|
imaeq1d |
|- ( f = A -> ( `' f " NN ) = ( `' A " NN ) ) |
12 |
11
|
sseq1d |
|- ( f = A -> ( ( `' f " NN ) C_ J <-> ( `' A " NN ) C_ J ) ) |
13 |
12 9
|
elrab2 |
|- ( A e. T <-> ( A e. ( NN0 ^m NN ) /\ ( `' A " NN ) C_ J ) ) |
14 |
11
|
eleq1d |
|- ( f = A -> ( ( `' f " NN ) e. Fin <-> ( `' A " NN ) e. Fin ) ) |
15 |
14 8
|
elab4g |
|- ( A e. R <-> ( A e. _V /\ ( `' A " NN ) e. Fin ) ) |
16 |
13 15
|
anbi12i |
|- ( ( A e. T /\ A e. R ) <-> ( ( A e. ( NN0 ^m NN ) /\ ( `' A " NN ) C_ J ) /\ ( A e. _V /\ ( `' A " NN ) e. Fin ) ) ) |
17 |
|
elin |
|- ( A e. ( T i^i R ) <-> ( A e. T /\ A e. R ) ) |
18 |
|
elex |
|- ( A e. ( NN0 ^m NN ) -> A e. _V ) |
19 |
18
|
pm4.71i |
|- ( A e. ( NN0 ^m NN ) <-> ( A e. ( NN0 ^m NN ) /\ A e. _V ) ) |
20 |
19
|
anbi1i |
|- ( ( A e. ( NN0 ^m NN ) /\ ( ( `' A " NN ) e. Fin /\ ( `' A " NN ) C_ J ) ) <-> ( ( A e. ( NN0 ^m NN ) /\ A e. _V ) /\ ( ( `' A " NN ) e. Fin /\ ( `' A " NN ) C_ J ) ) ) |
21 |
|
3anass |
|- ( ( A e. ( NN0 ^m NN ) /\ ( `' A " NN ) e. Fin /\ ( `' A " NN ) C_ J ) <-> ( A e. ( NN0 ^m NN ) /\ ( ( `' A " NN ) e. Fin /\ ( `' A " NN ) C_ J ) ) ) |
22 |
|
an42 |
|- ( ( ( A e. ( NN0 ^m NN ) /\ ( `' A " NN ) C_ J ) /\ ( A e. _V /\ ( `' A " NN ) e. Fin ) ) <-> ( ( A e. ( NN0 ^m NN ) /\ A e. _V ) /\ ( ( `' A " NN ) e. Fin /\ ( `' A " NN ) C_ J ) ) ) |
23 |
20 21 22
|
3bitr4i |
|- ( ( A e. ( NN0 ^m NN ) /\ ( `' A " NN ) e. Fin /\ ( `' A " NN ) C_ J ) <-> ( ( A e. ( NN0 ^m NN ) /\ ( `' A " NN ) C_ J ) /\ ( A e. _V /\ ( `' A " NN ) e. Fin ) ) ) |
24 |
16 17 23
|
3bitr4i |
|- ( A e. ( T i^i R ) <-> ( A e. ( NN0 ^m NN ) /\ ( `' A " NN ) e. Fin /\ ( `' A " NN ) C_ J ) ) |