Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
|- P = { f e. ( NN0 ^m NN ) | ( ( `' f " NN ) e. Fin /\ sum_ k e. NN ( ( f ` k ) x. k ) = N ) } |
2 |
1
|
eulerpartleme |
|- ( A e. P <-> ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) |
3 |
|
cnvimass |
|- ( `' A " NN ) C_ dom A |
4 |
|
fdm |
|- ( A : NN --> NN0 -> dom A = NN ) |
5 |
3 4
|
sseqtrid |
|- ( A : NN --> NN0 -> ( `' A " NN ) C_ NN ) |
6 |
|
simpl |
|- ( ( A : NN --> NN0 /\ k e. ( `' A " NN ) ) -> A : NN --> NN0 ) |
7 |
5
|
sselda |
|- ( ( A : NN --> NN0 /\ k e. ( `' A " NN ) ) -> k e. NN ) |
8 |
6 7
|
ffvelrnd |
|- ( ( A : NN --> NN0 /\ k e. ( `' A " NN ) ) -> ( A ` k ) e. NN0 ) |
9 |
7
|
nnnn0d |
|- ( ( A : NN --> NN0 /\ k e. ( `' A " NN ) ) -> k e. NN0 ) |
10 |
8 9
|
nn0mulcld |
|- ( ( A : NN --> NN0 /\ k e. ( `' A " NN ) ) -> ( ( A ` k ) x. k ) e. NN0 ) |
11 |
10
|
nn0cnd |
|- ( ( A : NN --> NN0 /\ k e. ( `' A " NN ) ) -> ( ( A ` k ) x. k ) e. CC ) |
12 |
|
simpr |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> k e. ( NN \ ( `' A " NN ) ) ) |
13 |
12
|
eldifad |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> k e. NN ) |
14 |
12
|
eldifbd |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> -. k e. ( `' A " NN ) ) |
15 |
|
simpl |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> A : NN --> NN0 ) |
16 |
|
ffn |
|- ( A : NN --> NN0 -> A Fn NN ) |
17 |
|
elpreima |
|- ( A Fn NN -> ( k e. ( `' A " NN ) <-> ( k e. NN /\ ( A ` k ) e. NN ) ) ) |
18 |
15 16 17
|
3syl |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( k e. ( `' A " NN ) <-> ( k e. NN /\ ( A ` k ) e. NN ) ) ) |
19 |
14 18
|
mtbid |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> -. ( k e. NN /\ ( A ` k ) e. NN ) ) |
20 |
|
imnan |
|- ( ( k e. NN -> -. ( A ` k ) e. NN ) <-> -. ( k e. NN /\ ( A ` k ) e. NN ) ) |
21 |
19 20
|
sylibr |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( k e. NN -> -. ( A ` k ) e. NN ) ) |
22 |
13 21
|
mpd |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> -. ( A ` k ) e. NN ) |
23 |
15 13
|
ffvelrnd |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( A ` k ) e. NN0 ) |
24 |
|
elnn0 |
|- ( ( A ` k ) e. NN0 <-> ( ( A ` k ) e. NN \/ ( A ` k ) = 0 ) ) |
25 |
23 24
|
sylib |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( ( A ` k ) e. NN \/ ( A ` k ) = 0 ) ) |
26 |
|
orel1 |
|- ( -. ( A ` k ) e. NN -> ( ( ( A ` k ) e. NN \/ ( A ` k ) = 0 ) -> ( A ` k ) = 0 ) ) |
27 |
22 25 26
|
sylc |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( A ` k ) = 0 ) |
28 |
27
|
oveq1d |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( ( A ` k ) x. k ) = ( 0 x. k ) ) |
29 |
13
|
nncnd |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> k e. CC ) |
30 |
29
|
mul02d |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( 0 x. k ) = 0 ) |
31 |
28 30
|
eqtrd |
|- ( ( A : NN --> NN0 /\ k e. ( NN \ ( `' A " NN ) ) ) -> ( ( A ` k ) x. k ) = 0 ) |
32 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
33 |
32
|
eqimssi |
|- NN C_ ( ZZ>= ` 1 ) |
34 |
33
|
a1i |
|- ( A : NN --> NN0 -> NN C_ ( ZZ>= ` 1 ) ) |
35 |
5 11 31 34
|
sumss |
|- ( A : NN --> NN0 -> sum_ k e. ( `' A " NN ) ( ( A ` k ) x. k ) = sum_ k e. NN ( ( A ` k ) x. k ) ) |
36 |
35
|
eqcomd |
|- ( A : NN --> NN0 -> sum_ k e. NN ( ( A ` k ) x. k ) = sum_ k e. ( `' A " NN ) ( ( A ` k ) x. k ) ) |
37 |
36
|
adantr |
|- ( ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) -> sum_ k e. NN ( ( A ` k ) x. k ) = sum_ k e. ( `' A " NN ) ( ( A ` k ) x. k ) ) |
38 |
37
|
eqeq1d |
|- ( ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) -> ( sum_ k e. NN ( ( A ` k ) x. k ) = N <-> sum_ k e. ( `' A " NN ) ( ( A ` k ) x. k ) = N ) ) |
39 |
38
|
pm5.32i |
|- ( ( ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) <-> ( ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) /\ sum_ k e. ( `' A " NN ) ( ( A ` k ) x. k ) = N ) ) |
40 |
|
df-3an |
|- ( ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) <-> ( ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) ) |
41 |
|
df-3an |
|- ( ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin /\ sum_ k e. ( `' A " NN ) ( ( A ` k ) x. k ) = N ) <-> ( ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin ) /\ sum_ k e. ( `' A " NN ) ( ( A ` k ) x. k ) = N ) ) |
42 |
39 40 41
|
3bitr4i |
|- ( ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin /\ sum_ k e. NN ( ( A ` k ) x. k ) = N ) <-> ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin /\ sum_ k e. ( `' A " NN ) ( ( A ` k ) x. k ) = N ) ) |
43 |
2 42
|
bitri |
|- ( A e. P <-> ( A : NN --> NN0 /\ ( `' A " NN ) e. Fin /\ sum_ k e. ( `' A " NN ) ( ( A ` k ) x. k ) = N ) ) |