| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpathpr.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | releupth |  |-  Rel ( EulerPaths ` G ) | 
						
							| 3 |  | reldm0 |  |-  ( Rel ( EulerPaths ` G ) -> ( ( EulerPaths ` G ) = (/) <-> dom ( EulerPaths ` G ) = (/) ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( ( EulerPaths ` G ) = (/) <-> dom ( EulerPaths ` G ) = (/) ) | 
						
							| 5 | 4 | necon3bii |  |-  ( ( EulerPaths ` G ) =/= (/) <-> dom ( EulerPaths ` G ) =/= (/) ) | 
						
							| 6 |  | n0 |  |-  ( dom ( EulerPaths ` G ) =/= (/) <-> E. f f e. dom ( EulerPaths ` G ) ) | 
						
							| 7 | 5 6 | bitri |  |-  ( ( EulerPaths ` G ) =/= (/) <-> E. f f e. dom ( EulerPaths ` G ) ) | 
						
							| 8 |  | vex |  |-  f e. _V | 
						
							| 9 | 8 | eldm |  |-  ( f e. dom ( EulerPaths ` G ) <-> E. p f ( EulerPaths ` G ) p ) | 
						
							| 10 | 1 | eulerpathpr |  |-  ( ( G e. UPGraph /\ f ( EulerPaths ` G ) p ) -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) | 
						
							| 11 | 10 | expcom |  |-  ( f ( EulerPaths ` G ) p -> ( G e. UPGraph -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) ) | 
						
							| 12 | 11 | exlimiv |  |-  ( E. p f ( EulerPaths ` G ) p -> ( G e. UPGraph -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) ) | 
						
							| 13 | 9 12 | sylbi |  |-  ( f e. dom ( EulerPaths ` G ) -> ( G e. UPGraph -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) ) | 
						
							| 14 | 13 | exlimiv |  |-  ( E. f f e. dom ( EulerPaths ` G ) -> ( G e. UPGraph -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) ) | 
						
							| 15 | 7 14 | sylbi |  |-  ( ( EulerPaths ` G ) =/= (/) -> ( G e. UPGraph -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) ) | 
						
							| 16 | 15 | impcom |  |-  ( ( G e. UPGraph /\ ( EulerPaths ` G ) =/= (/) ) -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) |