Step |
Hyp |
Ref |
Expression |
1 |
|
eulerth.1 |
|- ( ph -> ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) ) |
2 |
|
eulerth.2 |
|- S = { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } |
3 |
|
eulerth.3 |
|- T = ( 1 ... ( phi ` N ) ) |
4 |
|
eulerth.4 |
|- ( ph -> F : T -1-1-onto-> S ) |
5 |
|
eulerth.5 |
|- G = ( x e. T |-> ( ( A x. ( F ` x ) ) mod N ) ) |
6 |
1
|
simp2d |
|- ( ph -> A e. ZZ ) |
7 |
6
|
adantr |
|- ( ( ph /\ x e. T ) -> A e. ZZ ) |
8 |
|
f1of |
|- ( F : T -1-1-onto-> S -> F : T --> S ) |
9 |
4 8
|
syl |
|- ( ph -> F : T --> S ) |
10 |
9
|
ffvelrnda |
|- ( ( ph /\ x e. T ) -> ( F ` x ) e. S ) |
11 |
|
oveq1 |
|- ( y = ( F ` x ) -> ( y gcd N ) = ( ( F ` x ) gcd N ) ) |
12 |
11
|
eqeq1d |
|- ( y = ( F ` x ) -> ( ( y gcd N ) = 1 <-> ( ( F ` x ) gcd N ) = 1 ) ) |
13 |
12 2
|
elrab2 |
|- ( ( F ` x ) e. S <-> ( ( F ` x ) e. ( 0 ..^ N ) /\ ( ( F ` x ) gcd N ) = 1 ) ) |
14 |
10 13
|
sylib |
|- ( ( ph /\ x e. T ) -> ( ( F ` x ) e. ( 0 ..^ N ) /\ ( ( F ` x ) gcd N ) = 1 ) ) |
15 |
14
|
simpld |
|- ( ( ph /\ x e. T ) -> ( F ` x ) e. ( 0 ..^ N ) ) |
16 |
|
elfzoelz |
|- ( ( F ` x ) e. ( 0 ..^ N ) -> ( F ` x ) e. ZZ ) |
17 |
15 16
|
syl |
|- ( ( ph /\ x e. T ) -> ( F ` x ) e. ZZ ) |
18 |
7 17
|
zmulcld |
|- ( ( ph /\ x e. T ) -> ( A x. ( F ` x ) ) e. ZZ ) |
19 |
1
|
simp1d |
|- ( ph -> N e. NN ) |
20 |
19
|
adantr |
|- ( ( ph /\ x e. T ) -> N e. NN ) |
21 |
|
zmodfzo |
|- ( ( ( A x. ( F ` x ) ) e. ZZ /\ N e. NN ) -> ( ( A x. ( F ` x ) ) mod N ) e. ( 0 ..^ N ) ) |
22 |
18 20 21
|
syl2anc |
|- ( ( ph /\ x e. T ) -> ( ( A x. ( F ` x ) ) mod N ) e. ( 0 ..^ N ) ) |
23 |
|
modgcd |
|- ( ( ( A x. ( F ` x ) ) e. ZZ /\ N e. NN ) -> ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = ( ( A x. ( F ` x ) ) gcd N ) ) |
24 |
18 20 23
|
syl2anc |
|- ( ( ph /\ x e. T ) -> ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = ( ( A x. ( F ` x ) ) gcd N ) ) |
25 |
19
|
nnzd |
|- ( ph -> N e. ZZ ) |
26 |
25
|
adantr |
|- ( ( ph /\ x e. T ) -> N e. ZZ ) |
27 |
18 26
|
gcdcomd |
|- ( ( ph /\ x e. T ) -> ( ( A x. ( F ` x ) ) gcd N ) = ( N gcd ( A x. ( F ` x ) ) ) ) |
28 |
25 6
|
gcdcomd |
|- ( ph -> ( N gcd A ) = ( A gcd N ) ) |
29 |
1
|
simp3d |
|- ( ph -> ( A gcd N ) = 1 ) |
30 |
28 29
|
eqtrd |
|- ( ph -> ( N gcd A ) = 1 ) |
31 |
30
|
adantr |
|- ( ( ph /\ x e. T ) -> ( N gcd A ) = 1 ) |
32 |
26 17
|
gcdcomd |
|- ( ( ph /\ x e. T ) -> ( N gcd ( F ` x ) ) = ( ( F ` x ) gcd N ) ) |
33 |
14
|
simprd |
|- ( ( ph /\ x e. T ) -> ( ( F ` x ) gcd N ) = 1 ) |
34 |
32 33
|
eqtrd |
|- ( ( ph /\ x e. T ) -> ( N gcd ( F ` x ) ) = 1 ) |
35 |
|
rpmul |
|- ( ( N e. ZZ /\ A e. ZZ /\ ( F ` x ) e. ZZ ) -> ( ( ( N gcd A ) = 1 /\ ( N gcd ( F ` x ) ) = 1 ) -> ( N gcd ( A x. ( F ` x ) ) ) = 1 ) ) |
36 |
26 7 17 35
|
syl3anc |
|- ( ( ph /\ x e. T ) -> ( ( ( N gcd A ) = 1 /\ ( N gcd ( F ` x ) ) = 1 ) -> ( N gcd ( A x. ( F ` x ) ) ) = 1 ) ) |
37 |
31 34 36
|
mp2and |
|- ( ( ph /\ x e. T ) -> ( N gcd ( A x. ( F ` x ) ) ) = 1 ) |
38 |
24 27 37
|
3eqtrd |
|- ( ( ph /\ x e. T ) -> ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = 1 ) |
39 |
|
oveq1 |
|- ( y = ( ( A x. ( F ` x ) ) mod N ) -> ( y gcd N ) = ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) ) |
40 |
39
|
eqeq1d |
|- ( y = ( ( A x. ( F ` x ) ) mod N ) -> ( ( y gcd N ) = 1 <-> ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = 1 ) ) |
41 |
40 2
|
elrab2 |
|- ( ( ( A x. ( F ` x ) ) mod N ) e. S <-> ( ( ( A x. ( F ` x ) ) mod N ) e. ( 0 ..^ N ) /\ ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = 1 ) ) |
42 |
22 38 41
|
sylanbrc |
|- ( ( ph /\ x e. T ) -> ( ( A x. ( F ` x ) ) mod N ) e. S ) |
43 |
42 5
|
fmptd |
|- ( ph -> G : T --> S ) |