Metamath Proof Explorer


Theorem eunex

Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010) (Proof shortened by BJ, 2-Jan-2023)

Ref Expression
Assertion eunex
|- ( E! x ph -> E. x -. ph )

Proof

Step Hyp Ref Expression
1 dtruALT2
 |-  -. A. x x = y
2 albi
 |-  ( A. x ( ph <-> x = y ) -> ( A. x ph <-> A. x x = y ) )
3 1 2 mtbiri
 |-  ( A. x ( ph <-> x = y ) -> -. A. x ph )
4 3 exlimiv
 |-  ( E. y A. x ( ph <-> x = y ) -> -. A. x ph )
5 eu6
 |-  ( E! x ph <-> E. y A. x ( ph <-> x = y ) )
6 exnal
 |-  ( E. x -. ph <-> -. A. x ph )
7 4 5 6 3imtr4i
 |-  ( E! x ph -> E. x -. ph )