Metamath Proof Explorer


Theorem euop2

Description: Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004)

Ref Expression
Hypothesis euop2.1
|- A e. _V
Assertion euop2
|- ( E! x E. y ( x = <. A , y >. /\ ph ) <-> E! y ph )

Proof

Step Hyp Ref Expression
1 euop2.1
 |-  A e. _V
2 opex
 |-  <. A , y >. e. _V
3 1 moop2
 |-  E* y x = <. A , y >.
4 2 3 euxfr2w
 |-  ( E! x E. y ( x = <. A , y >. /\ ph ) <-> E! y ph )