Metamath Proof Explorer


Theorem euor

Description: Introduce a disjunct into a unique existential quantifier. For a version requiring disjoint variables, but fewer axioms, see euorv . (Contributed by NM, 21-Oct-2005)

Ref Expression
Hypothesis euor.nf
|- F/ x ph
Assertion euor
|- ( ( -. ph /\ E! x ps ) -> E! x ( ph \/ ps ) )

Proof

Step Hyp Ref Expression
1 euor.nf
 |-  F/ x ph
2 1 nfn
 |-  F/ x -. ph
3 biorf
 |-  ( -. ph -> ( ps <-> ( ph \/ ps ) ) )
4 2 3 eubid
 |-  ( -. ph -> ( E! x ps <-> E! x ( ph \/ ps ) ) )
5 4 biimpa
 |-  ( ( -. ph /\ E! x ps ) -> E! x ( ph \/ ps ) )