Metamath Proof Explorer


Theorem euor2

Description: Introduce or eliminate a disjunct in a unique existential quantifier. (Contributed by NM, 21-Oct-2005) (Proof shortened by Andrew Salmon, 9-Jul-2011) (Proof shortened by Wolf Lammen, 27-Dec-2018)

Ref Expression
Assertion euor2
|- ( -. E. x ph -> ( E! x ( ph \/ ps ) <-> E! x ps ) )

Proof

Step Hyp Ref Expression
1 nfe1
 |-  F/ x E. x ph
2 1 nfn
 |-  F/ x -. E. x ph
3 19.8a
 |-  ( ph -> E. x ph )
4 biorf
 |-  ( -. ph -> ( ps <-> ( ph \/ ps ) ) )
5 4 bicomd
 |-  ( -. ph -> ( ( ph \/ ps ) <-> ps ) )
6 3 5 nsyl5
 |-  ( -. E. x ph -> ( ( ph \/ ps ) <-> ps ) )
7 2 6 eubid
 |-  ( -. E. x ph -> ( E! x ( ph \/ ps ) <-> E! x ps ) )