Metamath Proof Explorer


Theorem euorv

Description: Introduce a disjunct into a unique existential quantifier. Version of euor requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2023)

Ref Expression
Assertion euorv
|- ( ( -. ph /\ E! x ps ) -> E! x ( ph \/ ps ) )

Proof

Step Hyp Ref Expression
1 biorf
 |-  ( -. ph -> ( ps <-> ( ph \/ ps ) ) )
2 1 eubidv
 |-  ( -. ph -> ( E! x ps <-> E! x ( ph \/ ps ) ) )
3 2 biimpa
 |-  ( ( -. ph /\ E! x ps ) -> E! x ( ph \/ ps ) )